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The Basics of Credit Risk Management'

e Loss Variable L =EAD x SEV x L

e Exposure at Default (EAD) = ouTrTST +~vCOMM

Basel Committee on banking supervision: 75% of off-balance sheet
amount. Ex. Committed line of one billion, current outstandings 600 million,
EAD =600+ 75% x 400 = 900.

Loss Given Default (LGD) = E[SEV]

— Quality of collateral

— Seniority of claim

L =1p, P(D) = DP: Probability of Default
— Calibration from market data, Ex. KMV Corp.

— Calibration from ratings, Ex. Moodys, S & P, Fitch, CRISIL : Statistical tools
+ Soft factors

— Ratings o DP: Fit “curve” to RR vs average DP plot
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e Expected Loss (EL) E[L]= EAD x LGD x DP

e Unexpected Loss (UL) =/ V(L)

— EAD x \/V(SEV)x DP2+ LGD? x DP(1— DP)

Portfolio: Lpr = >.1", EAD; x SEV; x L;

N

° ELPF = Z:r;l EADZ X LGD, X DPZ
e UL%, = Y7 EAD; x EAD; x Cov(SEV; x L;,SEV; x L;)

i,J=1

e Constant Severities

= Y EAD; x EAD; x LGD; x LGD; x \/DPZ-(l — DP))DP;j(1 — DP;) py;

i,J=1
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Value at Risk (VaR): o
o :inf{qg>0: P[Lpr < q] > a}

Economic Capital (EC}) —qgo — FELpr

Expected Shortfall:
TCE, = E[Lpr | Lpr>g,]

Economic Capital based on Shortfall Risk: TCE, — ELpp

Loss Distribution
— Monte-Carlo Simulation

— Analytical Approximation: Credit Risk™

Today’s Industry Models

— Credit Metrics and KMV-Model
— Credit Risk™

— CreditPortfolio View

— Dynamic Intensity Models
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Credit Metrics and the KMV-ModeII

e Asset Price Process: Agi)
e Valuation Horizon: T
L;, = 1{A¥)<Ci} ~ B(l,P(Agf) < CZ))

A(i)
rizlog % :R,q),—l—Gz, i:1,2,...,m

e Firm’s composite factor @, is a superposition of systematic influences
(industry and country indices)

e ¢, : Firm specific or idiosyncratic part
o R? = portion of the volatility in r; explained by volatility in ®;

r; ~N(0,1); & ~N(0,1); ¢~N(0,1-R})
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Global Correlation Model I \

Industry and Country Indices: U, = 22[:1 bjnI'n 4 0n, 7=1,...,J
Independent Global Facors: I,
J
(I)i = Zwijllfj
j=1
L, = 1{7“¢<Ci} ~ B(l, P(?“Z' < CZ))
r, <c = € <c — R;P;

pi=P(ri<e¢) = ¢ =N '(p)

-N_l(pz‘) — R;®;
i(P;)) = N
pi(®;) _ T
pi(®) = N (N~(p;) — R Z}]:l w;jV;
AR - /—1 — R,LQ
e Simulate a realization of ¥ — Simulate realization of L;
o One realization of the loss

\. Loss Distribution /
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e KMV tool GCorr computes asset correlations

e KMV provides the weights and asset correlations to its customers

e Can use these correlations with heavy tailed copulas to obtain stronger tail
dependencies:
- F, Univariate t—distribution with n d.f.
- Fur Multivariate t—distribution with n d.f. and correlation matrix I'.
— Cor(ut, . yum) = Eur(Fy ug), oo B (um))
- O r(z1,...,xm) = Cpr(N(21),..., N(xp))
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Two Differences Between KMV-Model and Credit Metrics'

e Credit Metrics uses equity price correlations, whereas KMV carries out the
complicated translation from equity and market information to asset values

e Credit Metrics uses indices referring to a combination of some industry in some
particular country, whereas KMV considers industries and countries separately
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CreditPortfolio View '

Default and rating migrations are subject to random fluctuations that depend

on the economic cycle

Unconditional migration matrix M = (myj), ,j=1,...,K:

rating categories

® MK : one year historic probability of default in rating category i

S risk segments that react differently to the economic conditions
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1. Simulate a segment specific conditional default probability ps, s=1,...,5.
Aggregated Second Level Scenario

2. Define the risk index

Ps
rs = —
Ps
Ds unconditional default probability of segment s
3. Conditional migration matrix M)

mfj = Oéij(’l“s - 1) + mij

The shift matrix (cvij) satisfying > @ij =0 must be
calibrated by the user

M) applies to all obligors in segment s. Some entries may turn out to be
negative. Set equal to 0 and renormalize.
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mj; = aij(rs — 1) + m;;
o r, < 1: expanding economy, lower possibility of downgrades and higher
number of upgrades
o r,=1: average macroeconomic scenario
o, >1: recession, downgrades more likely

For each realization of the default probabilities, simulate the defaults and loss.
Repeat simulation several times to generate the loss distribution.

N
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CPV supports two modes of calibration:

e CPV Macro: default and rating migrations are explained by a macroeconomic
regression model. Macroeconomic model is calibrated by means of times series
of empirical data.

M
2
Yts,t = Ws,0 + § ws,sz,j,t + €s,t €s,t ™ N(07 Us,t)
j=1

to
XS?jat — 9]70 + : :ej,kXS,j,t—k —|_ nS,j,t
k=1

1
14+ exp(—Ys.t)

ps,t

e CPV Direct: p, drawn from a gamma distribution. Need only to calibrate the
two parameters of the gamma distribution for each s. ps can turn out to be
larger than 1.

N /
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Dynamic Intensity Models.

Basic Affine or Intensity Process
d\(t) = k(0 —A(t)) dt + o/ A(t) dB(t) + AJ(1)

J(t): pure jump process independent of the BM B(t) with jumps arriving
according to a Poisson process with rate ¢ and jump sizes AJ(t) ~ exp(u)

K = mean-reversion rate; o= diffusive volatility;
m=0+/lu/k long-run mean

Unconditional Default Probability  q(t) = E [e— Jo Aw) dﬂ
Correlated defaults A= X+ X,

X, X; basic affine processes with parameters (k, 0., 0, i, 4.) and (k, 0;, 0, t, £;)
representing the common performance aspects and the idiosyncratic risk

A - basic affine process with parameters (k, 0. + 0;, 0, i1, be + ¢;)

/
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dX,(t)

d(Xc + XZ)(t)

dWy

d(Xc + XZ)(t)

k(lp, — X,(t)) dt + 04/ X, (t) dBP(t) + AJP(1), p=c,i

'%((‘90 + 91) o (Xc + X'L)(t)) dt
0 (/X (t) dBE(t) + /X;(t) dB'(t)) + A(JC+ J)(t)

Xi
X7+ X]

X

dBC(t) + || -t
O\ X+ x;

dB"(t)

K((0c +0:) — (Xe + X)(1)) dt + o/(Xe + XT)(t) AW (t)
+A(J+ T)()

Conditioned on a realization of \;(t), 0 <t <T, the default time of obligor
i is the first arrival in a non-homogenous Poisson process with rate \;(-)

Conditional Probability of No Default = exp(— fOT A(s)ds)

N

/
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The Credit Risk™ Model.

Introduced in 1997 by CSFB
Actuarial Model
One of the most widely used credit portfolio models

Advantages:
— Loss Distribution can be computed analytically
— Requires no Monte-Carlo Simulations

— Explicit Formulas for Obligor Risk Contributions

Numerically stable computational procedure (Giese, 2003)

15
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The Standard CR™ Model.

Choose a suitable basic unit of currency AL
Adjusted exposure of obligor A, va=|FEa/AL]
Smaller number of Exposure Bands

DA expected default probability

The total portfolio loss L=> ,v4aNa.

Npe Zy Default of obligor A

PGF of the Loss Distribution G(z)=>"" P(L=n) 2"

n=0

16
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e Apportion Obligor Risk among K Sectors (Industry, Country) by choosing
numbers gi* such that Zle gt = 1.
e Sectoral Default Rates represented by non-negative variables vy
E(’yk) = 1, C’ov(’yk,’yl) = Okl k= 1,....,K.

e Standard CR™ Model assumes o; = 0, k #1
e Relating Obligor default rates to sectoral default rates

K

pa(Y) =pad_ gi e,

k=1
e pa(7) default rate conditional on the sector default rates v = (71, ...,7vk).
e Specific Sector: vo = 1. Captures ldosyncratic Risk
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e Conditional on v default variables N4 assumed to be independent Poisson

e Main Criticism of CR™ Model. Not Fair
—pa=01 = P(N4=2)=0.0045

— Need not assume N4 is Poisson, but Bernoulli

e Conditional PGF

K
G,(z) = eXp(Z Vi Pr(2)),

k=1

Pu(z) = > gipa(z"* —1)
A

M

= > | > gipa)z"-1)

m=1 \{va=m}

e Number of defaults in any exposure band is Poisson

~
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Default correlation between obligors arise only through their dependence on
the common set of sector default rates

Unconditional PGF of Loss Distribution

K

G(z) = E7(exp()_ i Pu(2))) = My (T = P(2))
k=1

MGF of Univariate Gamma Distribution with Mean 1 and Variance o is

(1-— Ukktk)_ﬁ

GOt (2) = exp <_ Z 1 log(1 — O'kkpk(z))>

o
—1 kk

Giese(2003): Numerically Stable Fast Recursion Scheme
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The Compound Gamma CR™ Model (Giese, 2003)'

Introduce sectoral correlations via common scaling factor S

Conditional on S vk is Gamma distributed with shape parameter

ag(9) = Sag, oy > 0, and constant scale parameter ;.

S follows Gamma with E[S] =1 and Var(S) = 62

1 = Evp = arf

Opl = O By + 62

Uniform Level of Cross Covariance = Distortion of Correlation
Structure.

1

M$G(T) = exp {—

+ 67 Zﬁi 1—@@?51{)]}

Calibration Problems

~
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The Two Stage CR™ Model (SKI, AD)I

Yi,..., Yy : Common set of Uncorrelated Risk Drivers
N
Ve = Z aki Y
i=1

Y; ~ Gamma with mean 1 and variance Vj;
Principle Component Analysis of Macroeconomic Variables

Factor Analysis

21
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G(z) = exp {—

— Z Alq Pk(z)

Al
Z — log(1 — UiiQi(Z))}

1=1

O-’LZ
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Model Comparison I

Giese (2003) had pointed out deficiencies in the earlier attempt to incorporate
correlations due to Burgisser et al

We compare the compound gamma and the two stage gamma models
Test portfolio made up of K = 12 sectors, each containing 3,000 obligors

Obligors in sectors 1 to 10 belong in equal parts to one of three classes with
adjusted exposures £y =1, Ey = 2.5, and E'3 = 5 monetary units and
respective default probabilities p; = 5.5%, ps = .8%, p3 = .2%.

For the three obligor classes in sectors 11 and 12, we assume the same default
rates but twice as large exposures (F1 =2, Fy =5, E3 = 10)

Okl :004,]€: 1,,10 011,11 — 012,12 =0.49

Correlation between sectors 11 and 12 is 0.5 whereas correlations between all the
other sectors are set equal to 0

Yi = Y;, 1= 1, ceey 11, Y12 = 05(Y11 + Y12), with VCLT’(YH) = 0.49

Var(Yi2) = 1.47, and Var(Y;) = 0.04 fori=1,...,10 /
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Standard CR+

Compound Gamma Model

Two-Stage Model

Expected Loss
Std Deviation
99% Quantile
99.5% Quantile
99.9% Quantile

1%
0.15%
1.42%
1.49%
1.64%

1%
0.17%
1.48%
1.55%
1.71%

1%
0.17%
1.53%
1.62%
1.84%

N

are quoted as percentage of the total adjusted exposure.

Table 1: Comparison of the loss distributions from the standard CR™, compound
gamma and two stage models for the test portfolio in example 1. All loss statistics

e 62 =0.013. This translates to a much lower correlation of 0.0265 (instead of
0.5) between sectors 11 and 12
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Risk Contributions

|

Value at Risk VAR >

Economic Capital ¢, — E|L]
e Expected Shortfall E[L|L > ¢,]

Quantile Contribution QC'4

Zle gk DW¥a—va) Gy (2)
D) G (2)

QCA =VAE(Na|L=14,) =pava

Gi(2) = 5 My (T = Q(2))

Gr(z) = G()Y —=

25
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Sector CR* Compound Gamma Model | Two-Stage Model
1,2 24.25% 21.71% 27.42%
3,...,10 | 0.37% 1.64 % 0.2 %
11,12 24.25 % 21.71% 21.59 %

Table 2: Aggregated risk contributions (in percent). Contributions to the loss

variance for the risk-adjusted breakdown of VaR (on a 99.9% confidence level).

e Compound gamma model can't pick up differing correlations among sectors that

are otherwise similar.

/
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