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Lower-dimensional Fefferman measures
via the Bergman kernel

Purvi Gupta

Abstract. Motivated by the theory of Hausdorff measures, we propose a
new construction of the Fefferman hypersurface measure. This construction
reveals the existence of non-trivial Fefferman-type measures on the boundary
of some domains — such as products of balls — which are outside the purview
of Fefferman’s original definition. We also show that these measures enjoy
certain transformation properties under biholomorphic mappings.

1. Introduction

In his paper Parabolic invariant theory in complex analysis (see [7]), Fefferman
observed that a certain positive (2d−1)-form, σΩ, on the boundary of a C2-smooth
strongly pseudoconvex domain, Ω ⊂ Cd, satisfies the following transformation law:

(1.1) F ∗σF (Ω) = | det JCF | 2d
d+1 σΩ,

where F is a biholomorphism on Ω that is C2-smooth on Ω. This form σΩ, or the
Fefferman hypersurface measure on ∂Ω, is defined (up to a constant) by

(1.2) σΩ ∧ dρ = 4
d

d+1 M (ρ)
1

d+1ωCd ,

where ωCd is the standard volume form on Cd, ρ is a defining function for Ω with
Ω = {ρ < 0}, and

M (ρ) = − det

(
ρ ρzk
ρzj ρzjzk

)
1≤j,k≤d

.

Our interest in this measure arises from (1.1), and more specifically, its invariance
under volume-preserving biholomorphisms. In view of this property, this measure
has been used to study Szegő projections on CR-manifolds ([11]), volume-preserving
CR invariants, isoperimetric problems (see [10] and [3]) and invariant metrics ([4]).
The standard Euclidean surface area measure notably lacks such a transformation
law when d > 1.

As strong pseudoconvexity is a biholomorphically invariant version of strong
convexity (see Definition 2.1), it is natural to ask whether an analogue of Fefferman’s
measure exists in the affine setting. In 1923, Blaschke ([5]) observed that if D ⊂ Rd
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is a C2-smooth convex body, the Blaschke affine surface area measure on ∂D given
by

μD = κ
1

d+1 s
Euc

,

where κ and sEuc are the Gaussian curvature function and the Euclidean surface
area form on ∂D, respectively, obeys the following identity:

A∗μA(D) = | det JRA|
d−1
d+1 μD,

where A is an affine transformation of Rd. In particular, μD is invariant under equi-
affine (volume-preserving affine) maps. This initiated a project of characterizing
Blaschke’s measure in ways that did not rely on the smoothness of the convex
body in question (see [8, Chap. 1.10] and [13] for details). Many of these methods
utilize a volume-approximation approach — elucidated below by two results, chosen
specifically due to their influence on the main ideas of this article.

Result 1.1 (Schütt-Werner, [15]). Let D � Rd be a convex domain. For any
δ > 0, let Dδ denote the intersection of all the halfspaces in Rd whose hyperplanes
cut off a set of volume δ from D. Then,

lim
δ→0

vol(D)− vol(Dδ)

δ
2

d+1

exists, and coincides (up to a dimensional constant) with the total Blaschke affine
surface area measure of ∂D when D is C2-smooth.

Result 1.2 (Ludwig, [14]). Let D � R
d be a C2-smooth strongly convex do-

main. For n ∈ N, let Pn denote the set of all d-dimensional convex polyhedra with
at most n facets. Then,

(1.3) inf{vol(DΔP ) : P ∈ Pn} ∼ �1

(∫
∂D

μD

)(d+1)/(d−1)
1

n2/(d−1)

as n → ∞, where Δ denotes the symmetric difference between sets and �1 is a
dimensional constant.

In order to establish an analogous project for the Fefferman hypersurface mea-
sure, results 1.1 and 1.2 have been generalized to the holomorphic setting (see
[1] and [9]), thus providing new characterizations of σΩ. We now paraphrase one
particularly relevant result of that kind.

Result 1.3 (Gupta, [9]). Let Ω � C2 be a C∞-smooth strongly pseudoconvex
domain and KΩ be its Bergman kernel (defined in Section 2). For n ∈ N, let BPn

denote the collection of all relatively compact sets in Ω of the form

P =
{
z ∈ Ω : |KΩ(w

j , z)| < mj , j = 1, ..., n
}
,

where, w1, ..., wn ∈ ∂Ω and m1, ...,mn > 0. Then,

(1.4) inf{vol(Ω \ P ) : P ∈ BPn} ∼ �2

(∫
∂Ω

σΩ

) 3
2 1√

n

as n → ∞, where �2 is a constant independent of Ω.

As neither smoothness nor strong pseudoconvexity are needed to define the
Bergman kernel, we ask whether the procedure outlined in Result 1.3 can be used
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to define the Fefferman hypersurface measure for more general domains. As an
example, we consider the unit bidisc D2 and observe that

lim
n→∞

√
n inf{vol(D2 \ P ) : P ∈ BPn} = 0 as n → ∞.

This is hardly surprising since σD2 makes sense and vanishes almost everywhere on
the boundary of D2 (see (1.2)). On further inspection, we find that

(1.5) lim
n→∞

n

log n
inf{vol(D2 \ P ) : P ∈ BPn} = �, for some � 	= 0.

With (1.4) in mind, we ask whether there is some measure on ∂D2 — possibly
supported on a proper subset — that determines the limit � in (1.5). Given the
invariance properties of the left-hand side in (1.5), a good choice would be the
standard product measure on the distinguished boundary, ∂D × ∂D, of D2 — a
measure that is conventionally used to set up Hardy spaces on the bidisc. This
motivates the following

Question. Is there a unified construction of boundary measures which are
invariant under volume-preserving biholomorphisms, that yields σΩ for strongly
pseudoconvex domains and the measure discussed above for the bidisc?

In this article, we answer the above question in the affirmative. Our construc-
tion is motivated by Result 1.3, but replaces the full Bergman kernel with the
arguably simpler diagonal Bergman kernel.

Definition 1.4. Let Ω ⊂ Cd be a bounded domain, KΩ be its Bergman kernel,
and ωCd be viewed as a measure on Ω. We set, for any M > 0,

ΩM := {z ∈ Ω : KΩ(z, z) > M}.
The Hausdorff-Fefferman measure on ∂Ω is defined as

σ̃Ω(A) := weak-∗ limit of
1

vol(ΩM )
χΩM

ωCd as M → ∞,

when it exists, where χ
A
denotes the indicator function of A.

We will later encounter Definition 4.2 which is a slight generalization of Defi-
nition 1.4. Under certain restrictions on the domain Ω, σ̃Ω does exist, and expands
the scope of Fefferman’s original definition as can be seen from the following result
(proved in Section 4):

Proposition 1.5. Here ≈ denotes equality up to renormalizations, Bd denotes
the unit ball in Cd, and all volume and hypersurface forms are viewed as measures.

(1) If Ω � C
d is a strongly pseudoconvex domain, then σ̃Ω ≈ σΩ.

(2) If Ω = Bd × Bd, then σ̃Ω is supported on ∂Bd × ∂Bd and σ̃Ω ≈ sBd · sBd ,
where sBd is the standard surface area on ∂Bd.

(3) If Ω = Bd1 ×Bd2 , with d1 > d2, then σ̃∂Ω is supported on ∂Bd1 ×Bd2 and
σ̃Ω ≈ h · sBd1 · ωCd2 , where h(z, w) = KBd2 (z, w)

1/(d1+1) and KΩ is the
Bergman kernel of Ω.

From our vantage point, it is crucial that the transformation and invariance
properties of the Fefferman hypersurface measure are inherited by the new measure
σ̃Ω. This is true under certain conditions, as is seen in our second result, for which
we need the following definition:
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Definition 1.6. The Hausdorff-Fefferman dimension of a bounded domain
Ω ⊂ Cd is said to exist if
(1.6)

sup{α > 0 : lim inf
M→∞

M
1
α vol(ΩM ) = ∞} = inf{α > 0 : lim sup

M→∞
M

1
α vol(ΩM ) = 0}.

In this case, we denote the above quantity by dimHF(Ω).

Remarks 1.7. Hereafter, we use the notation dimHF(Ω) under the implicit
assumption that the Hausdorff-Fefferman dimension of Ω exists. By definition, this
quantity is positive and finite.

We are now in the position to state a transformation law for σ̃Ω.

Theorem 1.8. Let Ω1,Ω2 � Cd be domains, and F : Ω1 → Ω2 a biholomor-
phism such that F ∈ C1(Ω1) and JCF is non-vanishing. Suppose

(i) α := dimHF(Ω
1) < ∞;

(ii) for a > 0, vol(Ω1
M )/ vol(Ω1

aM ) has a limit in [0,∞] as M → ∞;
(iii) vol(Ω1

M )/ vol(Ω2
M ) has a limit in [0,∞] as M → ∞.

Then,

(1.7) F ∗σ̃Ω2 ≈ | det JCF |2(1− 1
α )σ̃Ω1 ,

where ≈ denotes equality up to renormalizations as probability measures.

This article is organized as follows. We give some notation and definitions in
Section 2. In section 3, we will motivate the Hausdorff-Fefferman dimension, which
not only plays an integral role in the transformation law given by Theorem 1.8,
but also offers an invariant of independent geometric interest. We expand on the
construction of σ̃Ω and give the proofs of our results in Section 4.

2. Definitions

In this article, D denotes the unit disc in C and Bd denotes the unit ball in Cd.
For D ⊆ Rn, C(D) is the set of all continuous functions on D, and Ck(D), k ≥ 1,
denotes the set of all functions that are k-times continuously differentiable in some
open neighborhood of D. For a domain Ω ⊂ Cd, H(Ω) is the set of holomorphic
functions in Ω. When well defined, JRf(x) and JCf(x) denote the real and complex
Jacobian matrix, respectively, of f at x. For any Lebesgue measurable set D ⊂ Cd,
vol(D) denotes its total Lebesgue measure.

In our analogy between convex and complex analysis, the role of convexity is
played by pseudoconvexity:

Definition 2.1. A C2-smooth domain Ω ⊂ Cd is called strongly pseudoconvex
if there is a C2-smooth function ρ defined in a neighborhood U of Ω such that
Ω = {z ∈ U : ρ(z) < 0}, and for every z ∈ ∂Ω,

(2.1)
∑

1≤j,k≤d

∂2ρ

∂zj∂zk
(z)vjvk > 0

for all v = (v1, ..., vd) ∈ Cd \ {0} satisfying
∑d

j=1
∂ρ
∂zj

(z)vj = 0.

A (possibly non-smooth) domain Ω ⊂ C
d is called pseudoconvex if it can be ex-

hausted by strongly pseudoconvex domains, i.e, Ω = ∪j∈RΩj with each Ωj strongly
pseudoconvex and Ωj ⊆ Ωk for j < k.
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Although we are motivated by methods in convex analysis, our approach is
novel in its use of the following complex-analytic tool.

Definition 2.2. The Bergman kernel of a domain Ω, KΩ : Ω× Ω → C, is the
reproducing kernel of the Hilbert space {f ∈ H(Ω) : ||f ||2 < ∞}, where ||f ||2 is the
L2-norm of f with respect to the Lebesgue measure on Ω.

We will abbreviate KΩ(z, z) to KΩ(z). The Bergman kernel displays many
interesting and important properties (see [6] for a survey), the most important one
for our purpose being the following:

Fact. If F : Ω1 → Ω2 is a biholomorphism between bounded domains in Cd.
Then,

det JCF (z) ·KΩ2
(F (z), F (w)) · det JCF (w) = KΩ1

(z, w),

for all z, w ∈ Ω1.

We follow standard terminology and call a domain Ω � Cd Bergman exhaustive
if for every w ∈ ∂Ω, limz→w KΩ(z) = ∞.

3. The Hausdorff-Fefferman dimension

We begin this section by illustrating the relevance of the exponents of the Jaco-
bian terms in the transformation identities (1.1) and (1.7). Following the exposition

in [2, Section 2], we consider the C-bundles O(j, k) over the projective space CP
d.

Any section of O(j, k) over a subset E ⊂ CP
d is given by a C-valued function G on

the corresponding dilation-invariant subset of Cd+1\{0} satisfying the homogeneity
condition

G(λz) = λjλkG(z).

Here j, k ∈ R with j − k ∈ Z. The space of continuous sections of O(j, k) over E is
denoted by Γ(E; j, k). Owing to Remark 1 in [2, Section 2] we are allowed to use
the notation

g(z1, ..., zd)(dz1 ∧ · · · ∧ dzd)
−j
d+1 (dz1 ∧ · · · ∧ dzd)

−k
d+1

for sections of O(j, k). Now, let S denote a biholomorphically invariant collection
of CR-manifolds in Cd such that for each S ∈ S , there is a finite positive measure
σS such that

F ∗νF (S) = | det JCF |2βνS
for any biholomorphism F in a neighborhood of S, where β > 0 does not depend
on S. Then for any submanifold C ⊂ CP

d that restricts to an element in S in each
affine chart, there is an O(β(d+ 1), β(d+ 1))-valued measure ν given in the affine

chart U0 = {[z0 : · · · : zd] ∈ CP
d : z0 	= 0} by

ν :=
νC∩U0

(dz1 ∧ · · · ∧ dzd)β(dz1 ∧ · · · ∧ dzd)β
.

This allows us to define the L2-norm

||G||2C =

∫
C

GGdν

for G ∈ Γ(C; j, k) with j + k = β(d + 1). Thus, the quantity β plays a role in
setting up appropriate Hardy spaces in the projective space. This has been done in
[2, Section 8.] for the case where S is the collection of all smooth strongly pseu-
doconvex hypersurfaces in Cd, with β = d

d+1 . The exponent of the Jacobian term
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in (1.1) also plays a role in designing constant-Jacobian biholomorphic invariants
such as the isoperimtric quotient in [3]. As this exponent can be deduced from the
Hausdorff-Fefferman dimension of the domain in question (see Definition 1.6), we
devote the rest of this section to some basic properties of dimHF.

Proposition 3.1. Let F : Ω1 → Ω2 be a biholomorphism such that a ≤
| det JCF | ≤ b for some a, b > 0. If Ω1 admits a Hausdorff-Fefferman dimension,
then so does Ω2, and dimHF(Ω

2) = dimHF(Ω
1).

Proof. Let Kj(z) := KΩj (z) for z ∈ Ωj , j = 1, 2. Observe that

F−1(Ω2
M ) = {z ∈ Ω1 : K2(F (z)) > M}

= {z ∈ Ω1 : K1(z) > M | det JCF (z)|2}
⊆ {z ∈ Ω1 : K1(z) > Ma2}.(3.1)

Therefore,

vol(Ω2
M ) =

∫
F−1(Ω2

M )

| det JCF (z)|2 ωCd(z)

≤
∫
Ω1

Ma2

| det JCF (z)|2 ωCd(z) ≤ b2 vol(Ω1
Ma2).(3.2)

As a and b are independent ofM , we get that dimHF(Ω
2) ≤ dimHF(Ω

1). The reverse
inequality also holds as F−1 : Ω2 → Ω1 satisfies the hypothesis of the claim. �

Corollary 3.2. The Hausdorff-Fefferman dimension of a domain is invariant
under volume-preserving biholomorphisms.

We now use known estimates and formulas for the Bergman kernel to compute
the Hausdorff-Fefferman dimensions of two types of examples — smooth (with some
strong pseudoconvexity assumption), and non-smooth (with a product structure),
starting with some preliminary estimates on dimHF.

Lemma 3.3. Let Ω � Cd be a C1-smooth domain. Then, dimHF(Ω) ≤ d+ 1.

Proof. Let z ∈ Ω and dist(z, ∂Ω) denote the Euclidean distance of z from ∂Ω.
This proof relies on the well-known inequality

KΩ(z) ≤
const.

dist(z, ∂Ω)d+1
, for all z ∈ Ω,

which is obtained by rolling a ball of fixed radius in Ω along ∂Ω. Thus, {z ∈
Ω : KΩ(z) > M} ⊆ {z ∈ Ω : dist(z, ∂Ω) < (const.)M1/(d+1)}. The regularity
assumption on Ω yields

vol(ΩM ) ≤ vol{z ∈ Ω : dist(z, ∂Ω) < (const.)M1/(d+1)} ∼ 1

M1/(d+1)
as M → ∞.

Hence, the claim. �

Lemma 3.4. Let Ωj � C
dj , j = 1, ..., k, be Bergman exhaustive domains. Then,

dimHF(Ω
1 × · · · × Ωk) ≥ max{dimHF(Ω

j) : 1 ≤ j ≤ k}.

Proof. Let k = 2. It is known that KΩ1×Ω2

(
(z, w)

)
= KΩ1(z)KΩ2(w). Hence,

(Ω1 × Ω2)M =
⋃

w∈Ω2

{
(z, w) : z ∈ Ω1

M/KΩ2
(w)

}
⊃

⋃
w∈Ω2

{
(z, w) : z ∈ Ω1

M/k2

}
,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LOWER-DIMENSIONAL FEFFERMAN MEASURES VIA THE BERGMAN KERNEL 143

where k2 := minw∈Ω2 KΩ2
(w). Thus, for all α > 0,

M1/α vol
(
(Ω1 × Ω2)M

)
≥ M1/α vol

(
Ω2

)
vol

(
Ω1

M/k2

)
.

As k2 and vol(Ω2) are independent of M ,{
α : lim sup

M→∞
M

1
α vol

(
(Ω1 × Ω2)M

)
= 0

}
⊆

{
α : lim sup

M→∞
M

1
α vol(Ω1

M ) = 0

}
.

Repeating the argument with Ω2
M instead, we get that dimHF(Ω

1 × Ω2) ≥
max{dimHF(Ω

j) : j = 1, 2}. The argument for general k ∈ N+ follows from the fact
that if Ω1, ...,Ωk satisfy the hypothesis of the proposition, then so do Ω1×· · ·×Ωk−1

and Ωk. �

Proposition 3.5. (a) Let Ω � C
d be a C1-smooth domain. Suppose ∂ :

L2
(0,0)(Ω) → L2

(0,1)(Ω) has closed range, and there is a p ∈ ∂Ω such that ∂Ω is C2-

smooth and strongly pseudoconvex in a neighborhood of p. Then, dimHF(Ω) = d+1.
(b) Let Ω � Ck be a Bergman exhaustive domain such that

(3.3)

∫
Ω\ΩM

√
KΩ(z) ωCd(z) = o(Mη) as M → ∞, for every η > 0.

Then, dimHF(B
d × Ω) = max{d+ 1, dimHF(Ω)}.

Remark 3.6. An elementary example of a domain that satisfies condition (3.3)
is B

d, d ≥ 1. Moreover, if Ωj ⊂ C
dj , j = 1, ..., k, are domains that satisfy the

hypotheses of (b) in Propostion 3.5, then so does Ω1×· · ·×Ωk. Thus, in particular,
dimHF(B

d1 × · · ·Bdl) = max1≤j≤l{dj + 1}.

Proof of Proposition 3.5. (a) As proved in Proposition 3.3, dimHF(Ω) ≤
d + 1. By Hörmander’s theorem on the boundary behavior of the (diagonal)
Bergman kernel (see Theorem 3.5.1 in [12]), there exists a neigborhood U ⊂ ∂Ω of
p and a continuous positive function f : U → R such that

dist(z, ∂Ω)d+1KΩ(z) → f(z0), z → z0 ∈ U.

Thus, for any V � U , there is a c > 0, such that {z ∈ Ω : KΩ(z) > M} ⊇ {z ∈ Ω :
dist(z, V ) < cM1/(d+1)}. We get,

vol(ΩM ) ≥ c′s(V )

M1/(d+1)
,

where c′ > 0 is a constant and s(V ) is the Euclidean surface area of V . This gives
the required lower bound on dimHF(Ω).

(b) We observe that for bd = vol(Bd),

KBd×Ω

(
(z, w)

)
=

1

bd(1− ||z||2)d+1
KΩ(w).

Thus, we may write
(3.4)(
B
d × Ω

)
M
={(z, w) : z ∈ B

d, w∈ΩMbd
}
⋃

{(z, w) :z∈(Bd)M/KΩ(w), w∈Ω\ΩMbd
}.

Now, fix an α > max{d + 1, dimHF(Ω)} and let η = 1
d+1 − 1

α . Then, by the def-
inition of dimHF and the hypothesis on Ω, given ε > 0, there is an Mε > 0 such
that vol(ΩMbd

) < εM−1/α and
∫
Ω\ΩMbd

KΩ(w)
1/(d+1) ωCd(w) ≤

∫
Ω\ΩMbd√

KΩ(w) ωCd(w) < εMη, for all M ≥ Mε. Using the decomposition in (3.4)
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and the fact that vol(Bd
M ) ≤ Cd/M

1/(d+1) for some dimensional constant Cd, we
get

vol
(
(Bd × Ω)M

)
= vol(Bd) vol(ΩMbd

) +

∫
Ω\ΩMbd

vol
(
B
d
M/KΩ(w)

)
ωCd(w)

≤ vol(Bd)
ε

M1/α
+

Cd

M1/(d+1)

∫
Ω\ΩMbd

KΩ(w)
1/(d+1) ωCd(w)

<
(
vol(Bd) + Cd

) ε

M1/α
,

for M ≥ Mε. Thus, dimHF(B
d × Ω) ≤ α for all α > max{d + 1, dimHF(Ω)}. The

lower bound follows from Proposition 3.4. �

Remark 3.7. To see how the Hausdorff-Fefferman dimension distinguishes
domains within a fixed ambient space, we observe that in C3, B3, B1 × B2 and
B1 × B1 × B1 have Hausdorff-Fefferman dimensions 4, 3 and 2, respectively.

4. Hausdorff-Fefferman measures

In analogy with Hausdorff measures, we would like to use the Hausdorff-
Fefferman dimension of Ω to construct Fefferman-type measures on ∂Ω. Under such
a scheme, the total measure of ∂Ω would be limM→∞ M1/ dimHF(Ω) vol(ΩM ). But, if
we consider the simple example of Ω = D×D, we find that limM→∞ M1/2 vol(ΩM ) =
∞. Infact, vol(ΩM ) ∼ M−1/2 log(M) as M → ∞. In view of this logarithmic term,
we expand the notion of the Hausdorff-Fefferman dimension in the following man-
ner.

Definition 4.1. Let Ω ⊂ Cd be a bounded domain. Any increasing dΩ ∈
C((0,∞)) is called a Hausdorff-Fefferman gauge function (or an HF-gauge function)
of Ω if

lim
M→∞

dΩ(M) vol(ΩM ) exists, and is positive and finite.

Definition 4.2. Let Ω and dΩ be as in Definition 4.1, and ωCd be viewed as a
measure on Ω. The Hausdorff-Fefferman measure on ∂Ω (corresponding to dΩ) is
defined as

σ̃Ω(A) := weak-∗ limit of dΩ(M)χ
ΩM

ωCd as M → ∞,

when it exists, where χA denotes the indicator function of A.

Remarks. (1) The weak-∗ limit above is in the space C(Ω)∗ — the space
of bounded linear functionals on C(Ω). By the Riesz representation theorem, σ̃Ω

is a finite, positive, regular, Borel measure on Ω — in fact, the support of σ̃Ω is
contained in ∂Ω, but may be strictly smaller, as we see in Proposition 1.5.

(2) If we choose dΩ(M) = vol(ΩM )−1, we obtain the measure defined in Defi-
nition 1.4. When we leave σ̃Ω unqualified, we are referring to this special choice of
HF-gauge function.

It would be interesting to know which domains admit a Hausdorff-Fefferman
measure. For now, we compute the examples stated in Proposition 1.5. We note
that although the the result is for σ̃Ω corresponding to dΩ(M) = vol(ΩM )−1, a
different choice of HF-gauge function changes the resulting measure only up to a
constant factor, and hence we do not place too much emphasis on the choice of dΩ.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LOWER-DIMENSIONAL FEFFERMAN MEASURES VIA THE BERGMAN KERNEL 145

Proof of Proposition 1.5. (1) Let Ω � Cd be strongly pseudoconvex. As
the range of ∂ : L2

(0,0)(Ω) → L2
(0,1)(Ω) is closed, we obtain by our computations

in Proposition 3.5, that dΩ(M) = M1/(d+1) is an HF-gauge function for Ω. To
compute σ̃Ω with respect to this dΩ(M), we recall Hörmander’s estimate:

lim
z→z0∈∂Ω

r(z)d+1KΩ(z) =
d!

πd
M (r)(z0), ∀z0 ∈ ∂Ω,

where r is a C2-smooth defining function for Ω, and M (r) is the Fefferman Monge-

Ampére operator defined in Section 1. Thus, setting n(z) :=
(

M (r)(z)
bdM

) 1
d+1

and

ν(z) to be the outward unit normal vector at z ∈ ∂Ω, we have for any f ∈ C(Ω),
ε > 0, an M large enough so that

{z − rν(z) ∈ Ω : z ∈ ∂Ω, r ∈ (0, n(z)(1− ε))} ⊆ ΩM

⊆ {z − rν(z) ∈ Ω : z ∈ ∂Ω, r ∈ (0, n(z)(1 + ε))} ,
and

|f(z − rν(z))− f(z)| < ε, ∀z ∈ ∂Ω, r ∈ [0, n(z)(1 + ε)].

Therefore,

dΩ(M)

∫
ΩM

f ωCd < M
1

d+1

∫
∂Ω

(f(z) + ε)(n(z)(1 + ε)) sΩ

= (4dbd)
−1
d+1 (1 + ε)

∫
∂Ω

(f(z) + ε) σΩ(z).

Similarly, dΩ(M)
∫
ΩM

f ωCd > (4dbd)
−1
d+1 (1− ε)

∫
∂Ω

(f(z)− ε) σΩ(z). Therefore,

σ̃Ω (w.r.t. dΩ) = (4dbd)
−1
d+1 σΩ (as measures).

Thus, after renormalizing both the measures, we obtain our claim.
(2)− (3) Let Ω = B

d1 × B
d2 , d1 ≥ d2. We set Kdj

:= K
B
dj , j = 1, 2. We write

vol(ΩM ) = T1 + T2,

where

T1 := vol(Bd1) vol(Bd2

Mbd1
) = bd1

bd2

(
1−

(
1− (Mbd1

bd2
)
− 1

(d2+1)

)d2
)

=
d2(bd1

bd2
)d2/(d2+1)

M1/(d2+1)
+ o(M−1/(d2+1)),(4.1)

and

T2 :=

∫
Bd2\Bd2

Mbd1

vol
(
B
d1

M/Kd2
(w)

)
ωCd(w)

= bd1

∫
Bd2\Bd2

Mbd1

(
1−

(
1−

(
Kd2

(w)

bd1
M

) 1
d1+1

))d1

ωCd(w)

= bd1

d1∑
r=1

(−1)r+1

(
d1
r

)
(bd1

M)
−r

d1+1 I [Mbd1
; d1; d2; r](4.2)

for

I[M ; d1; d2; r] :=

∫
{w∈Bd2 :Kd2

(w)≤M}
Kd2

(w)
r

d1+1 ωCd(w).
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Now, writing out the expression for Kd2
and using polar co-ordinates, we have that

I[M ; d1; d2; r] =
d2bd2

(bd2
)

r
d1+1

β

[
1− 1

(bd2
M)1/(d2+1)

; d2, 1−
d2 + 1

d1 + 1
r

]
,

where β[z; a, b] is the incomplete beta function
∫ z

0
ta−1(1− t)b−1dt. Since

β[1− x; a, b] =

⎧⎪⎨⎪⎩
Ca,b x−b + o(x−b), if b < 0;

log 1
x + Ca +O(x), if b = 0;

β(a, b) +O(xb), if 0 < b < 1,

as x → 0, where Ca,b, Ca > 0 are independent of x, we conclude that

I[M ; d1; d2; r](4.3)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C̃d1,d2,r M

1−(d2+1)r/(d1+1)
d2+1 + o(M1− d2+1

d1+1 r), if d2+1
d1+1r > 1;

d2

d2+1 (bd2
)d2/(d2+1) logM + C̃d2

+O(M−1/(d1+1)), if d2+1
d1+1r = 1;

d2bd2

(bd2
)

r
d1+1

β
(
d2, 1− d2+1

d1+1r
)
+O(M1− d2+1

d1+1 r), if d2+1
d1+1r ∈ (0, 1)

as M → ∞, where C̃d1,d2,r, C̃d2
> 0 are independent of M .

Our goal is to determine the asymptotic behavior of T2 (see (4.2)), as M → ∞.
Case i. d1 = d2. We use (4.3) to note that

M−r/d1+1I [Mbd1
; d1; d2; r] ∼

{
M− 2r−1

d1+1 = o(M−1/(d1+1)), if r > 1

M− 1
d1+1 logM, if r = 1.

Combining this with (4.1) and (4.2), we get that dΩ(M) := M1/(d+1)

log(M) is an HF-gauge

function for Ω = B
d × B

d, and collecting the various constants,

(4.4) lim
M→∞

dΩ(M) vol(ΩM ) =
d2

d+ 1
(bd)

2d
d+1 .

Next, to compute σ̃Ω with respect to this dΩ, let η ∈ (0, 1) and

Rη := {(z, w) ∈ B
d × B

d : min{||z||, ||w||} > η};
|R|η,M := {(|z|, |w|) ∈ R

2 : (z, w) ∈ ΩM ∩Rη}.

Due to rotational symmetry in each variable, vol(ΩM ∩Rη) = (2dbd)
2 vol(|R|η,M ).

Now, for a fixed η, whenM>b
−2
d (1−η2)−2d−2, it is easy to see that vol (ΩM \Rη)∼

M
−1
d+1 as M → ∞. Therefore, for any f ∈ C(Ω) and η ∈ (0, 1),

(4.5) lim
M→∞

dΩ(M)

∫
ΩM

f ωCd = lim
M→∞

dΩ(M)

∫
ΩM∩Rη

f ωCd .

Next, fix an ε > 0. Then, for η close enough to 1, we have that

|f(rθ, r′θ′)− f(θ, θ′)| < ε for any r, r′ ∈ (η, 1) and θ, θ′ ∈ ∂Bd.
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Therefore,∫
ΩM∩Rη

f ωCd =

∫
|R|η,M

∫
∂Bd

∫
∂Bd

f(rθ, r′θ′)(rr′)2d−1sBd(θ)sBd(θ′)drdr′

<

(
ε+

∫
∂Bd×∂Bd

f(θ, θ′)sBd(θ)sBd(θ′)

)
vol(|R|η,M )

=

(∫
(∂Bd)2

f sBdsBd + ε

)
vol(ΩM ∩Rη)

(2dbd)2
.

Similarly,∫
ΩM∩Rη

f ωCd >

(∫
(∂Bd)2

f sBdsBd − ε

)
(1− η)2d−1 vol(ΩM ∩Rη)

(2dbd)2
.

Thus, combining (4.4) and (4.5), we get that as measures,

σ̃Bd×Bd (w.r.t. dΩ)

= lim
M→∞

dΩ(M)
vol(ΩM ∩Rη)

(2dbd)2
=

d2

d+ 1

(bd)
2d

d+1

(2dbd)2
sBdsBd =

(bd)
−2
d+1

4(d+ 1)
sBdsBd .

Case ii. d1 > d2. We divide the asymptotic behavior ofM−r/d1+1I [Mbd1
; d1; d2; r]

into various cases to invoke (4.3), as in the previous case. At the end, we get that
T2 ∼ M−1/(d1+1) as M → ∞. Combining this with (4.1) , we conclude that
dΩ(M) = M−1/(d1+1) acts as an HF-gauge function for Ω = Bd1 × Bd2 as long as
d2 < d1. Moreover,

lim
M→∞

dΩ(M) vol(ΩM ) = d1d2(bd1
)

d1
d1+1 (bd2

)
d2

d2+1 β

(
d2, 1−

d2 + 1

d1 + 1

)
.

In order to compute σ̃Ω, we set, for any η ∈ (0, 1),

Aη := {(z, w) ∈ B
d1 × B

d2 : ||z|| > η};
|A|η,M (w) := {|z| ∈ R : (z, w) ∈ ΩM ∩Aη}.

Now, for a fixed η ∈ (0, 1), vol(ΩM \Aη) ∼ M−1/(d2+1) as M → ∞. Therefore, for

any f ∈ C(Ω) and η ∈ (0, 1),

lim
M→∞

dΩ(M)

∫
ΩM

f ωCd = lim
M→∞

dΩ(M)

∫
ΩM∩Aη

f ωCd .

In particular, limM→∞ dΩ(M) vol(ΩM ) = limM→∞ dΩ(M) vol(ΩM ∩Aη). Now, for
any fixed ε > 0, we may choose η close enough to 1, so that

|f(rθ, w)− f(θ, w)| < ε for any r ∈ (η, 1), θ ∈ ∂Bd1 and w ∈ B
d2 .

Hence, for a fixed η and large M ,∫
ΩM∩Aη

f ωCd =

∫
Bd2

∫
|A|η,M (w)

∫
∂Bd1

f(rθ, w)sBd(θ)r2d1−1dr ωCd(w)

<

∫
Bd2

(∫
∂Bd1

(ε+ f(θ, w))sBd(θ)

)∫
|A|η,M (w)

r2d1−1dr ωCd(w).
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We will need the fact that for w ∈ Bd2 ,∫
|A|η,M (w)

r2d1−1dr =

{
1

2d1

(
1−

(
1−

(Kd2
(w)

bd1
M

) 1
d1+1

)d1
)
, w ∈ B1;

1
2d1

(1− η2d1), w ∈ B
d2 \B1,

where B1 := {w ∈ Bd2 : ||w||2 ≤ 1 − (bd1
bd2

M(1 − η2)d1+1)
−1

d2+1 }. Thus, for any
fixed function h continuous in w,∫

Bd2

h(w)

∫
|A|η,M (w)

r2d1−1dr ωCd(w)

=

∫
B1

h(w)

∫
|A|η,M (w)

r2d1−1dr ωCd(w) +

∫
Bd2\B1

h(w)

∫
|A|η,M (w)

r2d1−1dr ωCd(w)

=
1

2
(bd1

M)
−1

d1+1

∫
B2

h(w)Kd2
(w)

1
d1+1 ωCd(w) + o(M

−1
d1+1 ) +O(M−1/(d2+1))

as M → ∞. Hence,

lim
M→∞

(
M

1
d1+1

∫
ΩM∩Aη

f ωCd

)

<
1

2
(bd1

M)
−1

d1+1

∫
Bd2

∫
∂Bd1

(ε+ f(θ, w))Kd2
(w)

1
d1+1 sBd(θ) ωCd(w).

Similarly,

lim
M→∞

(
M

1
d1+1

∫
ΩM∩Aη

f ωCd

)

>
1

2
(bd1

M)
−1

d1+1

∫
Bd2

∫
∂Bd1

(f(θ, w)− ε)Kd2
(w)

1
d1+1 sBd(θ) ωCd(w).

We now note that K
1

d1+1

d2
≈const. (1 − ||w||2)−

d2+1
d1+1 is integrable on Bd2 . Thus, we

can let η → 1, to obtain that for dΩ(M) = M−1/(d1+1),

σ̃Ω (w.r.t dΩ) =
1

2
(bd1

)
−1

d1+1 K
1

d1+1

d2
sBd ωCd (as measures).

�

Remarks 4.3. An extension of the above computations shows that if Ω =
Bd1 × · · · × Bdk , where d1 = · · · = dr > dr+1 ≥ dr+2 ≥ · · · dk, then σ̃Ω is supported
on (∂Bd)r × Bdr+1 · · · × Bdk and σ̃Ω ≈ hr+1 · · ·hk · (sBd1 )

r · ω
C

dr+1 · · ·ωCdk , where

hj(z1, ..., zk) = K
1

d1+1

dj
(zj).

We now present the proof of Theorem 1.8. We isolate a lemma that indicates
how conditions (i) and (ii) help us avoid domains whose HF-gauge functions have
(long-term) oscillatory behavior.

Lemma 4.4. Let Ω � Cd be such that α := dimHF(Ω) ∈ (0,∞) and condition
(ii) of Theorem 1.8 holds. Then, for any a > 0,

lim
M→∞

vol(ΩM )

vol(ΩMa)
= a

1
α .
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Proof. Set h(M) := M1/α vol(ΩM ). Note that

�a := lim
M→∞

h(M)

h(aM)
= lim

M→∞

M
1
α vol(ΩM )

(aM)
1
α vol(ΩaM )

= a−
1
α lim

M→∞

vol(ΩM )

vol(ΩMa)
.

Thus, �a ∈ [0,∞], by condition (ii).
Now, by the definition of dimHF and dΩ, we know that for any ε > 0,

lim
M→∞

M
1

α−ε vol(ΩM ) = ∞

lim
M→∞

M
1

α+ε vol(ΩM ) = 0.

Therefore,

(4.6) lim
M→∞

M
ε

(α−ε)αh(M) = ∞ and lim
M→∞

M
−ε

(α+ε)αh(M) = 0.

Fix an a > 1. Suppose �a > 1. Then, there is an s > 0 and an M > 0,
such that h(M ′) > ash(aM ′) for all M ′ ≥ M . Therefore, the sequence {sj :=
(ajM)sh(ajM)}j∈N+

is a strictly decreasing sequence of positive numbers that con-
verges to ∞ (see the first part of (4.6)). This is a contradiction.

If �a < 1, then, once again, for some s > 0 and M > 0, h(M ′) < a−sh(aM ′)
for all M ′ ≥ M . Therefore, the sequence {tj := (ajM)−sh(ajM)}j∈N+

is a strictly
increasing sequence of positive numbers that converges to 0 (the second part of
(4.6) is invoked here). This, too, is a contradiction. Therefore, �a = 1 when a > 1.
When a < 1, we simply note that �a = 1/� 1

a
= 1, since 1/a > 1. �

Proof of Theorem 1.8. Fix dj := dΩj — a choice of HF-gauge function
for Ωj , j = 1, 2. We first show that limM→∞ d1(M)/d2(M) exists and lies in
(0,∞). For this, observe that by the condition on F , we can find a, b > 0 such
that a ≤ | det JCF | ≤ b. Thus, by Proposition 3.1, dimHF(Ω

2) = α. We set

hj(M) := M1/α vol(Ωj
M ). Then,

(4.7)
d1(M)

d2(M)
=

d1(M) vol(Ω1
M )

d2(M) vol(Ω2
M )

× vol(Ω2
M )

vol(Ω1
M )

.

By definition, limM→∞ dj(M) vol(Ωj
M ) ∈ (0,∞). So, it suffices to show that

limM→∞
vol(Ω2

M )

vol(Ω1
M )

is non-zero and finite (see condition (iii) for existence). Now,

from the proof of Proposition 3.1 (see (3.2), in particular) we get

a2 vol(Ω1
Mb2) ≤ vol(Ω2

M ) ≤ b2 vol(Ω1
Ma2), M ∈ (0,∞).

Thus,

(4.8) a2
vol(Ω1

Mb2)

vol(Ω1
M )

≤ vol(Ω2
M )

vol(Ω1
M )

≤ b2
vol(Ω1

Ma2)

vol(Ω1
M )

, M ∈ (0,∞).

Thus, by Lemma 4.4, we have that vol(Ω2
M )/ vol(Ω1

M ) is bounded above and below
as M → ∞. Combining (4.7), (4.8) and (iii),

(4.9) L := lim
M→∞

d2(M)

d1(M)
exists and is in (0,∞).

Now, in order to prove the transformation law, we first show that the measure
F ∗σ̃Ω2 is absolutely continuous with respect to σ̃Ω1 . For this, we set

σj
M := dj(M)χ

Ω
j
M

ωCd , j = 1, 2.
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We also recall that if a bounded family of positive Borel measures {�M}M>0

on a metric space X converges weakly to a finite positive measure σ on X, then
(4.10)

lim
M→∞

�M (C) = σ(C) for every continuity set C — i.e., σ(∂C) = 0 — of X.

Now, let A ⊂ Ω1 be such that σ̃Ω1(A) = 0, and ε > 0. By the sparseness of
discontinuity sets (see [16, Page 7]) and the regularity of σ̃Ω1 , we can find open sets

Vε in Ω1 containing A such that σ̃Ω1(Vε) < ε, and Vε are continuity sets for σ̃Ω1

and F ∗σ̃Ω2 . By (4.10),

lim
M→∞

�1M (Vε) = σ̃Ω1(Vε) < ε.

By (3.1) in the proof of Proposition 3.1, we observe that F−1(F (Vε) ∩ Ω2
M ) ⊂

Vε ∩ Ω1
Ma2 . Hence,

F ∗σ2
M (Vε) ≤ b2

d2(M)

d1(Ma2)
σ1
Ma2(Vε)

= b2
d2(M)

d1(M)

d1(M) vol(Ω1
M )

d1(Ma2) vol(Ω1
Ma2)

vol(Ω1
Ma2)

vol(Ω1
M )

σ1
Ma2(Vε).

As d2(M)/d1(M), d1(M) vol(Ω1
M ) and vol(Ω2

Ma2)/ vol(Ω1
M ) all admit finite, non-

zero limits as M → ∞, we get that F ∗σ2
M (Vε) < cε for large enough M , and some

constant c > 0 independent of ε andM . By (4.10), F ∗σ̃Ω2(Vε)=limm→∞ F ∗σ2
M (Vε)

< cε. By outer regularity, F ∗σ̃Ω2(A) = 0.
In view of the Radon-Nikodym theorem, our conclusion above shows that there

exists a σ̃Ω1-measurable function G on ∂Ω1 such that F ∗(σ̃Ω2) = G · σ̃Ω1 on ∂Ω1.
Let x0 ∈ ∂Ω1. By the sparseness of discontinuity sets, we may find a decreasing
sequence of neighborhoods Uε of x0 that are continuity sets with respect to both
σ̃Ω1 and F ∗σ̃Ω2 and satisfy

| det JCF (x)− det JCF (x0)| < ε ∀x ∈ Uε.

Now, we observe that

F−1(Ω2
M ∩ F (Uε)) = {z ∈ Ω1 ∩ Uε : K2(F (z)) > M}

= {z ∈ Ω1 ∩ Uε : K1(z) > M | det JCF (z)|2}
⊆ {z ∈ Ω1 ∩ Uε : K1(z) > M(| det JCF (x0)| − ε)2}.

As in (3.2), we get that
(4.11)

F ∗σ2
M (Uε)≤(| det JCF (x0)|+ε)2

d2(M)

d1(M(| det JCF (x0)| − ε)2)
σ1
M(| det JCF (x0)|−ε)2(Uε).

In a similar manner, we get
(4.12)

F ∗σ2
M (Uε)≥(| det JCF (x0)|−ε)2

d2(M)

d1(M(| det JCF (x0)|+ ε)2)
σ1
M(| det JCF (x0)|+ε)2(Uε).

Taking limits as M → ∞ on both sides of (4.11) and (4.12), observing that

lim
M→∞

d2(M)

d1(cM)
= lim

M→∞

(
d2(M)

d1(M)

d1(M) vol(Ω1
M )

d1(cM) vol(Ω1
cM )

vol(Ω1
cM )

vol(Ω1
M )

)
= c−1/αL
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due to (4.9), the defining property of d1, and Lemma 4.4, we get that

L

(
| det JCF (x0)| − ε

(| det JCF (x0)|+ ε)−1/α

)2

≤ F ∗σ̃Ω2(Uε)

σ̃Ω1
(Uε)

≤ L

(
| det JCF (x0)|+ ε

(| det JCF (x0)| − ε)−1/α

)2

.

Therefore, as ε → 0, we get that

F ∗σ̃Ω2 (w.r.t. d2) = L| det JCF |2(1− 1
α )σ̃Ω1

(w.r.t. d1) (a.e. w.r.t. σ̃Ω1),

where L = lim
M→∞

d2(M)/d1(M). �
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