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Lower-dimensional Fefferman measures
via the Bergman kernel

Purvi Gupta

ABSTRACT. Motivated by the theory of Hausdorff measures, we propose a
new construction of the Fefferman hypersurface measure. This construction
reveals the existence of non-trivial Fefferman-type measures on the boundary
of some domains — such as products of balls — which are outside the purview
of Fefferman’s original definition. We also show that these measures enjoy
certain transformation properties under biholomorphic mappings.

1. Introduction

In his paper Parabolic invariant theory in complex analysis (see [T]), Fefferman
observed that a certain positive (2d — 1)-form, oq, on the boundary of a C2-smooth
strongly pseudoconvex domain, 2 C C¢, satisfies the following transformation law:

(1.1) F*UF(Q) = |dethF|d2_fldg,

where F is a biholomorphism on € that is C?-smooth on Q. This form oq, or the
Fefferman hypersurface measure on 9S), is defined (up to a constant) by

(1.2) oo Adp = 4T A (p) T we,

where wea is the standard volume form on C¢, p is a defining function for Q with

Q= {p <0}, and
///(p)-—det(p pa) .
Pz; Pzjzn ) 1<jk<d

Our interest in this measure arises from ([II), and more specifically, its invariance
under volume-preserving biholomorphisms. In view of this property, this measure
has been used to study Szegd projections on CR-manifolds ([11]), volume-preserving
CR invariants, isoperimetric problems (see [10] and [3]) and invariant metrics ([4]).
The standard Euclidean surface area measure notably lacks such a transformation
law when d > 1.

As strong pseudoconvexity is a biholomorphically invariant version of strong
convexity (see Definition2.1]), it is natural to ask whether an analogue of Fefferman’s
measure exists in the affine setting. In 1923, Blaschke ([5]) observed that if D C R?
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is a C2-smooth convex body, the Blaschke affine surface area measure on 0D given
by
HD = K/d—il SEuca

where x and s, are the Gaussian curvature function and the Euclidean surface
area form on 0D, respectively, obeys the following identity:

d—1
A*/LA(D) = |det J]RA|m,U,D,

where A is an affine transformation of R%. In particular, jp is invariant under equi-
affine (volume-preserving affine) maps. This initiated a project of characterizing
Blaschke’s measure in ways that did not rely on the smoothness of the convex
body in question (see [8, Chap. 1.10] and [13] for details). Many of these methods
utilize a volume-approximation approach — elucidated below by two results, chosen
specifically due to their influence on the main ideas of this article.

RESULT 1.1 (Schiitt-Werner, [15]). Let D € R? be a convex domain. For any
d >0, let Ds denote the intersection of all the halfspaces in RY whose hyperplanes
cut off a set of volume § from D. Then,
1(D) — vol(D
i VO (D) 2Vo (Ds)
§—0 Ja+1

exists, and coincides (up to a dimensional constant) with the total Blaschke affine
surface area measure of 0D when D is C*>-smooth.

REsULT 1.2 (Ludwig, [14]). Let D € R? be a C%-smooth strongly convex do-
main. Forn € N, let P,, denote the set of all d-dimensional convex polyhedra with
at most n facets. Then,
>(d+1)/(d1) 1

D
as n — oo, where A denotes the symmetric difference between sets and £y is a
dimensional constant.

In order to establish an analogous project for the Fefferman hypersurface mea-
sure, results [T and have been generalized to the holomorphic setting (see
1] and [9]), thus providing new characterizations of ocq. We now paraphrase one
particularly relevant result of that kind.

RESULT 1.3 (Gupta, [9]). Let Q € C? be a C*-smooth strongly pseudoconvex
domain and Kq be its Bergman kernel (defined in Section Bl). For n € N, let BP,,
denote the collection of all relatively compact sets in 0 of the form

P={z€eQ:|Kq(w, 2)| <mj,j=1,..,n},

where, w',...,w"™ € 0N and m1,...,m,, > 0. Then,
2
14 inf{vol(Q\ P): P € BP,,} ~ ¢ (/ UQ> —
(1.4) {vol(2\ P) } by ” Tn

as n — 0o, where {5 is a constant independent of ().

As neither smoothness nor strong pseudoconvexity are needed to define the
Bergman kernel, we ask whether the procedure outlined in Result [[.3] can be used
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to define the Fefferman hypersurface measure for more general domains. As an
example, we consider the unit bidisc D? and observe that

lim Vv inf{vol(D*\ P): P € BP,} =0  asn— .

This is hardly surprising since op2 makes sense and vanishes almost everywhere on
the boundary of D? (see (LZ)). On further inspection, we find that

(1.5) lim - &

n—oo logn

inf{vol(D*\ P): P € BP,} = ¢, for some ¢ # 0.

With (I4) in mind, we ask whether there is some measure on 9D? — possibly
supported on a proper subset — that determines the limit ¢ in (LCT). Given the
invariance properties of the left-hand side in (IH]), a good choice would be the
standard product measure on the distinguished boundary, D x D, of D?> — a
measure that is conventionally used to set up Hardy spaces on the bidisc. This
motivates the following

QUESTION. Is there a unified construction of boundary measures which are
invariant under volume-preserving biholomorphisms, that yields oq for strongly
pseudoconvex domains and the measure discussed above for the bidisc?

In this article, we answer the above question in the affirmative. Our construc-
tion is motivated by Result [[L3] but replaces the full Bergman kernel with the
arguably simpler diagonal Bergman kernel.

DEFINITION 1.4. Let Q ¢ C¢ be a bounded domain, Kg be its Bergman kernel,
and wca be viewed as a measure on 2. We set, for any M > 0,

O ={2€Q: Kq(z,2) > M}.
The Hausdorff-Fefferman measure on 0X) is defined as

cq(A) := weak-x limit of Xo,,wWca as M — oo,

1
vol(Qar)
when it exists, where y, denotes the indicator function of A.

We will later encounter Definition which is a slight generalization of Defi-
nition [[L4l Under certain restrictions on the domain €2, 6 does exist, and expands
the scope of Fefferman’s original definition as can be seen from the following result
(proved in Section M)):

PROPOSITION 1.5. Here ~ denotes equality up to renormalizations, B® denotes
the unit ball in C%, and all volume and hypersurface forms are viewed as measures.
(1) If Q € C? is a strongly pseudoconvex domain, then Gq ~ oq.
(2) If Q = B? x BY, then Gq is supported on OBY x OBY and 7o = sga - Spd,
where sga is the standard surface area on OB?.
(3) If Q = B x B, with dy > da, then Gaq is supported on OB™ x B and
Ga & h - spay - weas, where h(z,w) = Kga, (z,w)Y 1+ and Kq is the
Bergman kernel of 2.

From our vantage point, it is crucial that the transformation and invariance
properties of the Fefferman hypersurface measure are inherited by the new measure
0¢q. This is true under certain conditions, as is seen in our second result, for which
we need the following definition:
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DEFINITION 1.6. The Hausdorff-Fefferman dimension of a bounded domain
Q) C C? is said to exist if
(1.6)
sup{a > 0: lim inf M = vol(2pr) = oo} = inf{a > 0 : limsup Mw vol(257) = 0}.
M—ro0 M—00

In this case, we denote the above quantity by dimpg ().

REMARKS 1.7. Hereafter, we use the notation dimpgp(2) under the implicit
assumption that the Hausdorff-Fefferman dimension of €2 exists. By definition, this
quantity is positive and finite.

We are now in the position to state a transformation law for &q.

THEOREM 1.8. Let Q_l, 0% € C¢ be domains, and F : Q' — Q% a biholomor-

phism such that F € CY(Q) and JcF is non-vanishing. Suppose
(i) = dimpr(Q') < oo;

(ii) for a >0, vol(Q},)/vol(QL,,) has a limit in [0,00] as M — oo;

(i) vol(2},)/ vol(2%,) has a limit in [0,00] as M — .
Then,
(1.7) F*Goe ~ |det Je 2= %) G0,
where = denotes equality up to renormalizations as probability measures.

This article is organized as follows. We give some notation and definitions in
Section 2l In section Bl we will motivate the Hausdorff-Fefferman dimension, which
not only plays an integral role in the transformation law given by Theorem [[.8]
but also offers an invariant of independent geometric interest. We expand on the
construction of 6 and give the proofs of our results in Section [l

2. Definitions

In this article, D denotes the unit disc in C and B? denotes the unit ball in C?.
For D C R", C(D) is the set of all continuous functions on D, and C¥(D), k > 1,
denotes the set of all functions that are k-times continuously differentiable in some
open neighborhood of D. For a domain Q C C%, H(Q) is the set of holomorphic
functions in . When well defined, Jg f(z) and Jc f(z) denote the real and complex
Jacobian matrix, respectively, of f at z. For any Lebesgue measurable set D C C,
vol(D) denotes its total Lebesgue measure.

In our analogy between convex and complex analysis, the role of convexity is
played by pseudoconvexity:

DEFINITION 2.1. A C2-smooth domain Q C C? is called strongly pseudoconver
if there is a C2-smooth function p defined in a neighborhood U of Q such that
Q={zeU:p(z) <0}, and for every z € 01,

9?p
(2.1) Z ———(2)v,;uE >0
1< h<d 8zj82k

for all v = (vy, ...,vq) € C%\ {0} satisfying Z?Zl g—;;(z)vj =0.
A (possibly non-smooth) domain Q C C? is called pseudoconvez if it can be ex-

hausted by strongly pseudoconvex domains, i.e, £ = U;cr€); with each Q; strongly
pseudoconvex and Q; C Qy, for j < k.
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Although we are motivated by methods in convex analysis, our approach is
novel in its use of the following complex-analytic tool.

DEFINITION 2.2. The Bergman kernel of a domain Q, Kq : Q x Q — C, is the
reproducing kernel of the Hilbert space {f € H(Q?) : || f||]2 < oo}, where || f]|2 is the
L?-norm of f with respect to the Lebesgue measure on €.

We will abbreviate Kq(z,2) to Kq(z). The Bergman kernel displays many
interesting and important properties (see [6] for a survey), the most important one
for our purpose being the following:

FacT. If F : Q1 — Qs is a biholomorphism between bounded domains in C¢.
Then,
det JoF(2) - Kq,(F(z2), F(w)) - det Jc F(w) = Kq, (z,w),
for all z,w € Q.

We follow standard terminology and call a domain Q € C? Bergman ezhaustive
if for every w € 99, lim,_,,, Kq(z) = oo.

3. The Hausdorff-Fefferman dimension

We begin this section by illustrating the relevance of the exponents of the Jaco-
bian terms in the transformation identities (ILT]) and (7). Following the exposition
in [2] Section 2], we consider the C-bundles O(j, k) over the projective space CP.
Any section of O(j, k) over a subset E C CP? is given by a C-valued function G on
the corresponding dilation-invariant subset of C4+1\ {0} satisfying the homogeneity
condition o

G(\z) = MAFG(2).
Here j,k € R with j — k € Z. The space of continuous sections of O(j, k) over E is
denoted by I'(E; j, k). Owing to Remark 1 in [2] Section 2] we are allowed to use
the notation

9(21, ...,Zd)(d,z1 A A dzd)d;&(dz_l/\ RN dz—d)[—fl

for sections of O(j, k). Now, let . denote a biholomorphically invariant collection
of CR-manifolds in C? such that for each S € .7, there is a finite positive measure
og such that
F*VF(S) = \det J((;F‘zﬁl/g
for any biholomorphism F' in a neighborhood of S, where 8 > 0 does not depend
on S. Then for any submanifold C' C CP? that restricts to an element in . in each
affine chart, there is an O(8(d + 1), 5(d 4 1))-valued measure v given in the affine
chart Uy = {[z0 : -~ : zq] € CP?: 25 # 0} by
venu,
(dzy A+ Ndzg)B(dzr A -+ Ndzg)B

This allows us to define the L?-norm
e = [ cGar
c

for G € T'(C;j,k) with j + k = B(d+ 1). Thus, the quantity S plays a role in
setting up appropriate Hardy spaces in the projective space. This has been done in
[2] Section 8.] for the case where . is the collection of all smooth strongly pseu-
doconvex hypersurfaces in C?¢, with § = #‘ll. The exponent of the Jacobian term
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in (ILJ) also plays a role in designing constant-Jacobian biholomorphic invariants
such as the isoperimtric quotient in [3]. As this exponent can be deduced from the
Hausdorff-Fefferman dimension of the domain in question (see Definition [[0]), we
devote the rest of this section to some basic properties of dimyp.

PROPOSITION 3.1. Let F : Q' — Q2 be a biholomorphism such that a <
|det JcF| < b for some a,b > 0. If Q' admits a Hausdorff-Fefferman dimension,
then so does 2, and dimygr(9?) = dimpr(QY).

PROOF. Let K;(z) := Kqi(z) for z € @9, j = 1,2. Observe that
FH3,) = {z€Q':Ky(F(2)) > M}

{z€ Q' Ki(2) > M|det JcF(2)*}

{z€ Q' K(2) > Ma?}.

(3.1) C
Therefore,
vol(3,) = / | det JoF(2)]? wea(2)
“H(Q3)
(3.2) < / |det JoF'(2)]? wea(2) < b2 vol(2),,2).
Ql

Ma?2

As a and b are independent of M, we get that dimpr(Q?) < dimgr(Q2'). The reverse
inequality also holds as F~!: Q2 — Q! satisfies the hypothesis of the claim. O

COROLLARY 3.2. The Hausdorff-Fefferman dimension of a domain is invariant
under volume-preserving biholomorphisms.

We now use known estimates and formulas for the Bergman kernel to compute
the Hausdorff-Fefferman dimensions of two types of examples — smooth (with some
strong pseudoconvexity assumption), and non-smooth (with a product structure),
starting with some preliminary estimates on dimpyp.

LEMMA 3.3. Let Q € C? be a C*-smooth domain. Then, dimpr(Q) < d+ 1.

PROOF. Let z € Q and dist(z, 92) denote the Euclidean distance of z from 9.
This proof relies on the well-known inequality

const.
K <
2(2) < dist(z, OQ)4+1’
which is obtained by rolling a ball of fixed radius in  along 9Q. Thus, {z €
Q: Ko(z) > M} C {z € Q : dist(z,09) < (const.)M/ (@1} The regularity
assumption on §2 yields

for all z € ),

1
R VEVICESY)

Hence, the claim. O

vol(€s) < vol{z € Q : dist(z, Q) < (const.)M*/ (4T} as M — oo.

LEMMA 3.4. Let ¥ € C%, j =1, ..., k, be Bergman exhaustive domains. Then,
dimpp(Q x - x QF) > max{dimgp (V) : 1 < j < k}.

PRrROOF. Let k = 2. It is known that Kq1 g2 ((z7 w)) = K1 (2)Kqz2(w). Hence,

(Q' x Q)5 = U {(z,w):zEQ}w/K%(w)}D U {(z,w):zEQ}\/[/k2},
weN? weN?

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



LOWER-DIMENSIONAL FEFFERMAN MEASURES VIA THE BERGMAN KERNEL 143

where ks := min Kq,(w). Thus, for all a > 0,

we?
MY vol (@1 x 92)ar) = MY vol (22) vol (@, ) -
As ky and vol(Q?) are independent of M,

{a : lim sup M = vol (' x P)y) = O} - {a : limsup M= vol(Q},) = O} .
M —o0 M—ro0

Repeating the argument with Q2, instead, we get that dimpp(Q! x Q2) >

max{dimgr(Q?) : j = 1,2}. The argument for general k € N, follows from the fact

that if Q1. ..., QO satisfy the hypothesis of the proposition, then so do Q! x - - - x QF~1

and QF. O

PROPOSITION 3.5. (a) Let Q € C¢ be a C'-smooth domain. Suppose O :
L(QO,O)(Q) — L%OJ)(Q) has closed range, and there is a p € 9 such that 0 is C?-
smooth and strongly pseudoconvex in a neighborhood of p. Then, dimygp(Q) = d+1.
(b) Let Q € C* be a Bergman ezhaustive domain such that

(3.3) vV EKa(z) wea(z) = o(M") as M — oo, for every n > 0.
2\

Then, dimgr (B¢ x Q) = max{d + 1, dimpr(Q)}.

REMARK 3.6. An elementary example of a domain that satisfies condition (B.3])
is BY, d > 1. Moreover, if 2/ Cc C%, j = 1,...,k, are domains that satisfy the
hypotheses of (b) in Propostion BB then so does Q! x - - - x QF. Thus, in particular,
diIIlHF(IB%d1 X - 'Bdl) = maxlgjg{dj +1}.

PROOF OF PROPOSITION (a) As proved in Proposition B3] dimyr(Q) <
d + 1. By Hoérmander’s theorem on the boundary behavior of the (diagonal)
Bergman kernel (see Theorem 3.5.1 in [12]), there exists a neigborhood U C 9 of
p and a continuous positive function f: U — R such that

dist(z, 0Q)" " Kq(2) — f(20), 2z — 20 € U.

Thus, for any V' € U, there is a ¢ > 0, such that {z € Q: Kq(z) > M} 2 {x € Q:
dist(z, V) < cMY/ (@D} We get,
ds(V)
VOl(QM) Z m,
where ¢/ > 0 is a constant and s(V') is the Euclidean surface area of V. This gives

the required lower bound on dimpgr(€2).
(b) We observe that for by = vol(BY),

K]BdXQ((Z,w)) =
Thus, we may write
(3.4)
(B x Q),,={(z,w) : 2 € BL, weQuro, } (2 0) :2€ BY) at/ ke () w € 2\ Qo }-

Now, fix an a > max{d + 1,dimpr(Q?)} and let n = d+r1 — 1. Then, by the def-
inition of dimyp and the hypothesis on 2, given € > 0, there is an M. > 0 such

that vol(Qaze,) < eM~Y® and fQ\QMhd Ko(w)Y@*D ea(w) < fsz\sszd
Ko(w) wea(w) < eMn, for all M > M.. Using the decomposition in ([3.4)

1

ball — [y o)
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and the fact that vol(B%,) < C4/M"/(@+1) for some dimensional constant Cg, we
get

vol (B x Q) ) = vol(BY) vol(Qusp,) + / vol (JB%?WKQ(w)) wea (w)
QN\Qwre,
Cq

€
1 Bd K 1/(d+1)
vol( )Ml/a + M1/(d+1) /ﬂ\ﬂmd o(w) wea (w)

IN

d 6
< (VOI(B ) =+ Cd) W,
for M > M.. Thus, dimgr(B? x Q) < a for all a > max{d + 1,dimpr(Q2)}. The
lower bound follows from Proposition [3.4] |

REMARK 3.7. To see how the Hausdorfl-Fefferman dimension distinguishes
domains within a fixed ambient space, we observe that in C3, B3, B! x B2 and
B! x B! x B! have Hausdorff-Fefferman dimensions 4, 3 and 2, respectively.

4. Hausdorff-Fefferman measures

In analogy with Hausdorff measures, we would like to use the Hausdorfl-
Fefferman dimension of €2 to construct Fefferman-type measures on 992. Under such
a scheme, the total measure of 9Q would be limp;_, oo M/ dimar () vol(Qys). But, if
we consider the simple example of = DxD, we find that lim ;oo M /2 vol(Qyy) =
oco. Infact, vol(Qpr) ~ M~1/?1log(M) as M — co. In view of this logarithmic term,
we expand the notion of the Hausdorff-Fefferman dimension in the following man-
ner.

DEFINITION 4.1. Let Q C C? be a bounded domain. Any increasing dg €
C((0,00)) is called a Hausdorff-Fefferman gauge function (or an HF -gauge function)
of Qif

A}im da (M) vol(Q) exists, and is positive and finite.
— 00

DEFINITION 4.2. Let © and dq be as in Definition L1} and wca be viewed as a
measure on ). The Hausdor(f-Fefferman measure on 9 (corresponding to dg) is
defined as

0qa(A) := weak-* limit of do(M)x,,, wea as M — oo,
when it exists, where x, denotes the indicator function of A.

REMARKS. (1) The weak-* limit above is in the space C(Q)* — the space
of bounded linear functionals on C(2). By the Riesz representation theorem, g
is a finite, positive, regular, Borel measure on ) — in fact, the support of 7q is
contained in 0f2, but may be strictly smaller, as we see in Proposition

(2) If we choose dqo (M) = vol(Qy7)~!, we obtain the measure defined in Defi-
nition [L4l When we leave 6o unqualified, we are referring to this special choice of
HF-gauge function.

It would be interesting to know which domains admit a Hausdorff-Fefferman
measure. For now, we compute the examples stated in Proposition We note
that although the the result is for 6o corresponding to do(M) = vol(2y)~ !, a
different choice of HF-gauge function changes the resulting measure only up to a
constant factor, and hence we do not place too much emphasis on the choice of dg,.
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PROOF OF PROPOSITION (1) Let Q € C? be strongly pseudoconvex. As
the range of 0 : L?o,o)(Q) — L%0,1)(Q) is closed, we obtain by our computations

in Proposition B3] that do(M) = M@+ is an HF-gauge function for Q. To
compute o with respect to this do(M), we recall Hormander’s estimate:

|
lim  r(2)"Kq(z) = it//l(r)(zo), Vzo € 012,

z2—20 €0 7Td
where 7 is a C?-smooth defining function for Q, and . (r) is the Fefferman Monge-
1
Ampére operator defined in Section [[I Thus, setting n(z) := (%) ' and

v(z) to be the outward unit normal vector at z € 912, we have for any f € C(1),
€ > 0, an M large enough so that

{z=rv(2) eQ:2€00re(0,n(z)(1—¢))} C Oy
C{z—rv(z) €eQ:2e€0re(0,n(z)(1+¢))},

and
lf(z=rv(2)) = f(2)| <e, VzedQrel0,n(z)(1+e¢).
Therefore,

dan) [ fuce < M7 [ (GG @)1 +9) sn
= W) (1+e) [ (1) +2) onlo)
Similarly, do(M) [, | wea > (4%2) 77 (1~ €) [y (f(2) — &) oa(z). Therefore,
Fo (wrt. do) = (4%,) 7 oq (as measures).

Thus, after renormalizing both the measures, we obtain our claim.
(2) — (3) Let Q@ =B x B%, dy > dy. We set Ky, := Kga;, j = 1,2. We write

VOl(QM) = T+ %,
where
d d __ 1 \d2
Ty = vol(B®) vol(BY,, ) = bubu, (1 - (1= (Mby,by) @)
d(bg, b, )™/ (211 —1/(da+1
(4.1) = Alﬂ/z(dﬁl) + o(M V(=41
and
Ty = / vol (B% wed (w
? IBd2\IBi?hdl ( M/Kdz(“’)> Cd( )
K, AN
1
= bdl/ B 1-— 1-— <gd24§\1;)) W(Cd(’LU)
de\]}xﬂ;hdl dy
ds dy .
(4.2) = bdlZ(—l)T+1<T)(bdlM)dl“I[Mbdl;dl;dg;r]
r=1
for
I[M; dy; do; 7] ;:/ Ko, (W) T wea(w).
{weB?2:Kgq, (w)<M}
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Now, writing out the expression for K4, and using polar co-ordinates, we have that

da bdz 1 do+1

I[M;dysdar] = (bd2)ﬁ _(bd2M)1/(d2+1);d2’ —mr,

where [z;a,b] is the incomplete beta function [ t*~!(1 —¢)*~!dt. Since

Cop 70+ 0(z7b), ifb<0;
Bl —x;a,b) = S log 2 + Co + O(x), if b=0;
B(a,b) + O(z?), if0<b<1,

as ¢ — 0, where Cy 3, C > 0 are independent of x, we conclude that

(4.3) I[M;dy;da;r]

~ 1—(do+1)r/(dg+1) do+1
Caytgr M BT o(M'TTHT), if PHr> 1
d = B d
= d2<2Fl (bd2)d2/(d2+1) IOgM + Cdz + O(]\f _:/(dl-i_l)), if —dij;%,r = 1;
__dabay _ dotl 1-g25r e dot1
(bdz)dlzﬁr1 b (d27 ! d?“r) +OM R, if g € (0,1)

as M — oo, where édl,dz,rv C~'d2 > ( are independent of M.
Our goal is to determine the asymptotic behavior of Ty (see (£2)), as M — occ.
Case i. d; = dy. We use ([L3) to note that

2r—1

TaF — —1/(d1+1) i
MﬁT/dl‘FII[Mbdl;dl;dg;’f’] ~ M_; O(M )ﬂ 1f7"> 1
M™%+ log M, ifr=1.
Combining this with (1) and (£2), we get that do(M) = % is an HF-gauge

function for Q = B¢ x B?, and collecting the various constants,

d? 2d

(4.4) lim de (M) vol(Qay) = (by)#T.

Next, to compute o with respect to this dg, let n € (0,1) and

Ry = {(zw)eBxB*: min{|z|], [[wl[} > n};
[Rlpas = {(Iz],[w]) € R?: (2,w) € Qur N Ry}

Due to rotational symmetry in each variable, vol(Q N R;) = (2dbg)? vol(| R|y; ar).
Now, for a fixed 1, when M >b;2(1—n?)"2472 it is easy to see that vol (2 \ R,)) ~

M as M — co. Therefore, for any f € C(Q) and n € (0,1),

(4.5) im do(M) f wea = Mhinoo dQ(M)/ f wea.

1
M—o0 Qs QuNR,
Next, fix an € > 0. Then, for n close enough to 1, we have that

|f(r0,7'0") — £(0,0")| < for any 7,7’ € (,1) and 6,0 € OB
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Therefore,

/Q . fuwea = /R /BB . 0,70 ()2 L spa (0) spa (0" )drdr’
MNRy n,M d d

VOI(QM N RTI)
SpdSpd +€ | — 55—
</(amad)2 Jomess > (2dbq)?
Similarly,

_vol(Q N Ry)
Wwed > Sgaspe — € | (1 —n)?? 1\10777.
/QMmRnf c </(anaad)2f B >( " (2dbg)?

Thus, combining ([@4]) and (1), we get that as measures,

A

ORd B (W.I‘.t. dQ)

—2
, vol(yy NRy)  d2 (by)dir (bg) 7T
im do(M) Spd Spd 1A+ D)

M—o0 (2dbg)2  d+1(2dbg)?
Case ii. d; > dy. We divide the asymptotic behavior of M~"/“+1T [Mby, ; dy; da; 7]
into various cases to invoke (£3), as in the previous case. At the end, we get that
Ty ~ M+ a5 M — co. Combining this with @) , we conclude that
do(M) = M=+ acts as an HF-gauge function for Q = B% x B% as long as
do < dy. Moreover,

Spd SBd -

i T (b, )T dy +1
1\}13100 do(M) vol(§ar) = dldQ(bdl)dlil (hdz)d’?ilﬁ <d2, 1- dj + 1) .

In order to compute cq, we set, for any n € (0,1),

Ay = {(z,w) € BT x B® 1 ||2]| > n};
|Alpar(w) = {[z] € R: (z,w) € Qs N Ay}
Now, for a fixed 1 € (0,1), vol(Qas \ 4,) ~ M~/ (@+) as M — co. Therefore, for
any f € C(Q) and n € (0,1),

lim dQ(M) fw(cd = lim dQ(M)/ fw(cd.
M — o0 QMI'_WA,,I

M —o00 Qur

In particular, limas o0 do(M) vol(Qar) = im0 do (M) vol(2ar N A,)). Now, for
any fixed € > 0, we may choose 7 close enough to 1, so that

|f(r0,w) — f(0,w)| <e for any r € (,1), 6 € OB and w € B,

Hence, for a fixed n and large M,

/ fwea = / / f(Te,U})S]Bd(Q)TZdl_ldT wea (w)
Q]yjﬁAn Bd2 |A‘n‘]yj(w) OBd1

< /de (/&Bdl (e+ f(0,w))sBd(0)> /Aln,M(w) 21 =ldr wea(w).
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We will need the fact that for w € B?,

1 Ka, (w)\ 721 d _
/ P21, _ {E(l_(l_(bd‘fw)dl“) 1)’ w € By;
|Aln,m (w)

sq; (1= n*™), w € B\ By,

where By := {w € B% : [|[w]||? <1 — (bg,bg, M(1 — 172)‘11“)%}. Thus, for any
fixed function A continuous in w,

/ h(w)/ 2= dr wea (w)
B2 [Aly, a (w)

/ h(w)/ r2h=1 gy wcd(w)+/ h(w)/ 211 wea (w)
B [Aly, a1 (w) B2\ B, [Aln, ar (w)

1 =1 _1 =1
5 (bg, M) TfT / B(w) Ky (10) T wga () + o( M) 4+ O(M /(D)
B>

as M — oo. Hence,

1
lim | M &+t / f wed
M—o00 ( QunA, c >
1 =1
< 5 (bg, M) @1 / / (e+ f(0,w))Ka,(w) dll_FlS]Bd (0) wea(w).
2 ]de alel

Similarly,

lim | M / fw
M—o0 ( QuNA, (Cd)
1 =1 1
> Loy, ay7h / / (6, 0) — £) Ky (1) T 50 (8) wiea ().
2 ]de 8Bd1

T I d
We now note that Kj'"" ~const. (1 — [[w[[*)” ©FT is integrable on B“2. Thus, we
can let 7 — 1, to obtain that for do(M) = M~/ (d+1)

~ 1 =1 e
oo (wr.tdg) = 3 (bay ) TFT K" spa wea (as measures).
O

REMARKS 4.3. An extension of the above computations shows that if Q =
B x ... x B%, where d; = --- =d, > dyy1 > dpgo > - - dg, then oq is supported
on (OB x B¥+1 ... x B and 6o ~ hppq - hi - (Spar)” - Wedyyy * - Weay, , Where

1
. — KNt (.
hj(z1, ..., 21) = de (z)-
We now present the proof of Theorem [[.L8] We isolate a lemma that indicates

how conditions (¢) and (iz) help us avoid domains whose HF-gauge functions have
(long-term) oscillatory behavior.

LEMMA 4.4. Let Q € C? be such that a := dimpr(Q) € (0,00) and condition
(i3) of Theorem holds. Then, for any a > 0,

vol(Qar)

1
Moo vol(Qara)
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PROOF. Set h(M) := M/ vol(Qy,). Note that
hn M= vol(Qy) 1o vol(Qy)

ly = lim =1l T .
M—o0 h(aM) M — 00 (aM)E VOI(QUJ\/[) M—o0 VOl(QMa)

Thus, ¢, € [0, 0], by condition (ii).
Now, by the definition of dimyp and dg, we know that for any € > 0,

lim Mc%svol(QM) = o0
M —00
lim Ma= vol(Qy) = 0.
M —o00
Therefore,
(4.6) lim M@=9ah(M)=oc and lim M @¥oa (M) = 0.
M —o00 M —o00

Fix an a > 1. Suppose ¢, > 1. Then, there is an s > 0 and an M > 0,
such that h(M’') > a®h(aM’) for all M’ > M. Therefore, the sequence {s; :=
(a? M)*h(a? M)}jen, is a strictly decreasing sequence of positive numbers that con-
verges to oo (see the first part of ([6l). This is a contradiction.

If ¢, < 1, then, once again, for some s > 0 and M > 0, h(M') < a *h(aM’)
for all M’ > M. Therefore, the sequence {t; := (a’ M)~ *h(a?M)};en, is a strictly
increasing sequence of positive numbers that converges to 0 (the second part of
(40) is invoked here). This, too, is a contradiction. Therefore, ¢, = 1 when a > 1.
When a < 1, we simply note that £, = 1/¢1 =1, since 1/a > 1. O

ProOF OF THEOREM [[.8 Fix d; := dg; — a choice of HF-gauge function
for Q;, j = 1,2. We first show that limas_,oc d1(M)/do(M) exists and lies in
(0,00). For this, observe that by the condition on F, we can find a,b > 0 such
that @ < [detJcF| < b. Thus, by Proposition B.1} dimpr(Q?) = a. We set
hj(M) == MY vol(},). Then,

di(M)  dy(M)vol(Q,) " vol(93,)
do(M) — do(M)vol(Q2,) = vol(2},)’
By definition, limps o d;(M)vol(9,) € (0,00). So, it suffices to show that

. 1(Q2,) . . .. .
limas— oo XEIEQ{”; is non-zero and finite (see condition (7ii) for existence). Now,
M

(4.7)

from the proof of Proposition B1] (see (8:2), in particular) we get
a®vol(Qp2) < vol(Q3,) < b?vol(Qy,2), M € (0,00).
Thus,
o VOl(Q3,p2) _ vol(Q3,)  ,vol(Q),,)
vol(Q%,) — vol(Q},) = wvol(Q},) ’

Thus, by Lemma 4] we have that vol(Q2,)/ vol(Q2},) is bounded above and below
as M — oco. Combining (1), (@8] and (i),

(4.8)

M € (0, 00).

da(M)
4.9 L:= lim exists and is in (0, c0).
(4.9) Moo dy (M) (0, 00)
Now, in order to prove the transformation law, we first show that the measure
F*0q2 is absolutely continuous with respect to oq1. For this, we set

ol = dj(M)Xﬂjchd, j=1,2.
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We also recall that if a bounded family of positive Borel measures {€ns}arr>0
on a metric space X converges weakly to a finite positive measure o on X, then
(4.10)

A/}iinoo Ly (C) = o(C) for every continuity set C' — i.e., 0(0C) =0 — of X.
Now, let A € Q! be such that Gqi(A) = 0, and € > 0. By the sparseness of
discontinuity sets (see [16], Page 7]) and the regularity of o1, we can find open sets
V. in Q! containing A such that g1 (Vz) < g, and V; are continuity sets for o1

and F*oq2. By (£10),
lim (3, (Vo) =oq1(Ve) <e.

M— o0

By @) in the proof of Proposition Bl we observe that F~1(F(V.) N Q3%,) C
Ven Q}\/IaQ. Hence,

§( l) A
do(M) di(M)v 1(91) VOI(QMQQ)
4, (3

) d (e vol(2, ) o2l e (Vo)

Froj(Ve) < b

=b2

As dy(M)/dy (M), di (M) vol(2},) and vol(Q3,,.)/ vol(Q},) all admit finite, non-
zero limits as M — oo, we get that F*o3,(V.) < ce for large enough M, and some
constant ¢ > 0 independent of € and M. By [@I0), F*cq2 (V) =limy,— 0o F* o3, (V)
< ce. By outer regularity, F*5gz2(A) = 0.

In view of the Radon-Nikodym theorem, our conclusion above shows that there
exists a gqg1-measurable function G on 90! such that F*(5g2) = G - Gg1 on INL.
Let 2o € 0. By the sparseness of discontinuity sets, we may find a decreasing
sequence of neighborhoods U, of zy that are continuity sets with respect to both
oqr and F*oq2 and satisfy

|det JoF'(z) — det JoF(zo)| < € Vz € U..
Now, we observe that
N NFU) = {€Q'NU.: Ky (F(2) > M}
= {zeQ'nU.: Ki(2) > M|det JcF(2)|*}
C {z€Q'NU.: Ki(2) > M(|det JcF(z0)| — ¢)?}.

As in (B2), we get that
(4.11)

do(M
F* 0% (U2) < (| det JoF (o) | +2)? 2(M)

1
dy (M (| det JoF(x0)| — 6)2)0M(| det JCF(%MFEP(UE).

In a similar manner, we get

(4.12)

F*03,(U.) > (| det Jc F (w0) | —¢)? do(M)

1
dy (M(‘ det J(CF(J»'O)| ¥ 6)Q)UM(|dct JCF(mo)\Jrs)?(UE)'
Taking limits as M — oo on both sides of (@I1)) and (£I2), observing that

Oy (00 GO )Y i
M=oo di(¢cM)  M—oo \ dy (M) dy(cM)vol(Q2},,) vol(Q,)
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due to ([@3), the defining property of d;, and Lemma [£.4] we get that
( |det Je F(x0)| — ¢ )2 _ F0:(U.) _ L( | det Jo F(x0)] + ¢ )2
(|det JcF (zg)| + &)~/ oo, (Us) — (|det JeF(zg)| — )~/
Therefore, as € — 0, we get that
F*Gor (wort. do) = L|det JoF2(7%)50, (wart. di)  (ae. wrt. Go1),
where L = lim dy(M)/dy(M). O
M—o0
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