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Abstract

It is well known that there exist domains €2 in C", n > 2, such that all holomorphic functions in
() continue analytically beyond the boundary. We wish to study this remarkable phenomenon.
The first chapter seeks to motivate this theme by offering some well-known extension results
on domains in C" having many symmetries. One important result, in this regard, is Hartogs’
theorem on the extension of functions holomorphic in a certain neighbourhood of (D x {0}) U
(0D x D), D being the open unit disc in C. To understand the nature of analytic continuation
in greater detail, in Chapter 2, we make rigorous the notions of ‘extensions’ and ‘envelopes
of holomorphy’ of a domain. For this, we use methods similar to those used in univariate
complex analysis to construct the natural domains of definitions of functions like the logarithm.
Further, to comprehend the geometry of these abstractly-defined extensions, we again try to
deal with some explicit domains in C"; but this time we allow our domains to have fewer
symmetries. The subject of Chapter 3 is a folk result generalizing Hartogs’ theorem to the
extension of functions holomorphic in a neighbourhood of S U (9D x D), where S is the
graph of a D-valued function ®, continuous in D and holomorphic in I. This problem can be
posed in higher dimensions and we give its proof in this generality. In Chapter 4, we study
Chirka and Rosay’s proof of Chirka’s generalization (in C?) of the above-mentioned result.
Here, ® is merely a continuous function from D to itself. Chapter 5 — a departure from
our theme of Hartogs-Chirka type of configurations — is a summary of the key ideas behind
a ‘non-standard’ proof of the so-called Hartogs phenomenon (i.e., holomorphic functions in
any connected neighbourhood of the boundary of a domain 2 € C", n > 2, extend to the
whole of Q). This proof, given by Merker and Porten, uses tools from Morse theory to
tame the boundary geometry of €2, hence making it possible to use analytic discs to achieve
analytic continuation locally. We return to Chirka’s extension theorem, but this time in
higher dimensions, in Chapter 6. We see one possible generalization (by Bharali) of this
result involving ® € A, where 2 is a subclass of C(D;D"), n > 2. Finally, in Chapter
7, we consider Hartogs-Chirka type configurations involving graphs of multifunctions given
by “Weierstrass pseudopolynomials”. We will consider pseudopolynomials with coefficients
belonging to two different subclasses of C(ID; C), and show that functions holomorphic around

these new configurations extend holomorphically to D?.
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1. Introduction and Basic Theorems

In the function theory of several complex variables, a function f : 2 — C, 2 a domain in C",
is holomorphic if for every point a € €, there is a polydisc A(a) centred at a such that

A(a) C Q and f can be written as an absolutely convergent power series

f(z) = Z ao(z —a)®, z € A(a),

aeN”

where the right-hand side converges uniformly on compact subsets of A(a). The set of func-
tions holomorphic on 2 shall be denoted by O(f2). The two most well-known phenomena in
the study of such functions are those of analytic continuation and the inequivalence of the
ball and the polydisc. This is a report on an effort to study the continuation phenomenon
systematically. It is easy to see that if Q is a domain in C and a € C\ €, there exists a
holomorphic function f in €2 which cannot be continued analytically to the point a. This is

not true in C"*, n > 1. We begin with some well-known results to elucidate this.

Theorem 1.1 (Hartogs). Let Q := D(0;1+¢) x D(0;e)" ' UAnn(0;1—¢,1+¢) x D(0; 1)" 1
n > 2, for some small ¢ > 0. If f € O(Q), then f extends holomorphically to D", i.e.,

JF € O(D™) such that F’mm = f|mu)>n'

This theorem is a special case of a more general, yet basic, phenomenon that we now

explore. For this, we need a definition.

Definition 1.2. A domian  C C" is called a Reinhardt domain if whenever (z1,...,2,) €
Q and (04, ...,0,) € R", we have (¢?1zy,...,e"2,) € Q.

Theorem 1.3. Let Q be a Reinhardt domain in C* and f € O(Q). Then, f admits a Laurent

Series erpansion
f(z) = Z 2"

aEZ™
such that the series on the right-hand side converges absolutely Vz € € and uniformly to f on

compact subsets of (). Moreover, the a,’s are uniquely determined by f.

Proof. We begin by proving the uniqueness. Let w € €2 be a point with coordinates (wy, ..., w,),
w; # 0Vj < n. Let T"(w) := {(wie, ..., w,e") : (6y,...,0,) € R"}. Then, since the series

converges uniformy to f on compact subsets of 2 and T"(w) is compact in 2, we can multiply
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101+ +anbn

by e~ ) and integrate term by term to obtain:

Ay =

1 21 2 161 n 0 —i(cx191+-~~+cxn0n)
/ / flwie™, ..., wneT)e d6,,..db,. (1.1)
0 0

(2m)" w®

As clarification: we shall use multi-index notation throughout this chapter. In this notation,
for any o € Z™ and w € C", we write w® := w" ... w%". The above expression holds for any
Laurent series expansion having the desired convergence. Note that it does not depend on w.

Hence, a,’s are uniquely determined by f.

To prove the existence of an expansion as above, we first note that if
A= {Z c Cn|7“j < |ZJ| < Rj, 0< T < Rj, j= 1,...,7’L}

and f is holomorphic on A, then, by iteration of the Laurent expansion for functions of one
complex variable defined on annuli, it follows that f has an expansion in a Laurent series. Let
w € ). Let € > 0 be so small that €2, being Reinhardt, contains the set

A(w;e) :={z € C": |wj| —e < |z| < |w;| +¢}.
Since this is a set of the form A4 above, there exists a Laurent series expansion
> aa(w)z" = f(2), 2 € A(w;e),
aEZ™

which converges uniformly to f on compact subsets of A(w;e). Now, if w € A(w;e) and
> aq(w)z® is the expansion corresponding to w in a set A(w;e) C €2, then the uniqueness

assertion above shows that a,(w) = a,(w).

Hence, the function w +— a,(w) is locally constant on 2 for any o € Z". Since € is

connected, a,(w) = a, is independent of w. This establishes the existence of a Laurent series

Z anz" = f(2)

aEeZ™

expansion

that converges absolutely at each z € €). Now, let K be a compact set in €). Then, there exist

m
W1, ooy Wy and €1, ..., &, such that K C | A(ws; es). Since the series converges uniformly on
s=1

compacts in each A(wy;es), we obtain uniform convergence in K. ]

The above theorem (Theorem 1.3) is often useful in proving results regarding analytic

continuation of holomorphic functions beyond a given domain. Here is one such result.

Corollary 1.4. Let Q2 be a Reinhardt domain such that for each j, 1 < j < n, there is
a point z € Q whose j-th coordinate is 0. If f € O(R), then IF € C’)(@), where ) =
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{(p121, ...,pnzn)| 0<p; <1,(21,.... 2,) € Q}, such that F}Q = f.

Proof. Let f € O(Q). Then, by Theorem 1.3, there exists a Laurent series expansion

f(z) = Z g2
a€Zn

such that the series on the right-hand side converges absolutely Vz € €2 and uniformly to f

on compact subsets of €). Let n: N — Z" be an enumeration. Then,

,
Y ay;z"? — f(2) absolutely ¥z € Q. (1.2)
7=0

Now, suppose there exists an g = (o, ...,a) and a k < n such that

e af < 0; and
® a,, # 0.

By the hypothesis imposed on €2, there exists a zy € {2 such that z;, = 0 and z; # 0, when j #
k. If p € N is such that n(p) = «ag, then

X
Z (2" =00 Yy > p.
7=0

This contradicts equation (1.2). Hence, a,, = 0. This implies that there is, in fact, a power

series expansion of f in §2 as follows:

f(z) = Z Ao 2" (1.3)

Finally, define F': Q — C as
F(z):= Z 2", (1.4)
aeNn
where the absolute convergence of the series on the right-hand side, for each z € ﬁ, follows
from the defintion of (. Uniform convergence on compact sets of the type D := D(zy;¢) X+ -+ X

D(zn; €), D contained in €, is now established by dominating | > aaz®| by 3 agleortton
aeN™ aeN™

for z in D. Since any compact subset of Q can be covered by a finite number of such sets
lying within 2, the convergence of the right-hand side of equation (1.4) is uniform on compact
subsets of Q. Thus F € O(Q) and, by equation (1.3), F‘Q =f. O

Observe that Theorem 1.1 is, as hinted earlier, a general case of Corollary 1.4 as the (2

defined there is a Reinhardt domain containing the origin.
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We will revisit the method of proof adopted above in Chapter 3. The following result is

proved using somewhat different techniques.

Theorem 1.5 (Hartogs, [9]). Let 2 be a domain in C*, n > 2. Let K be a compact subset of
Q such that Q\ K is connected. For each f € O(Q\ K), 3f € O(Q) such that ﬂQ\K =f.

The key to this theorem lies in the following proposition:

Proposition 1.6. Let f = Y f;dz; be a (0,1) form on C", n > 2, with C¥-smooth coefficients,
j=1

that is 0-closed. Then the equation
ou=f (1.5)

has a C*-smooth solution u such that u is compactly supported; indeed, u = 0 on the unbounded

component of (supp(f))C.

Equation (1.5) is a special case of a class of partial differential equations which play an
important role in analysing the continuation phenomenon. Finding conditions under which
such equations, i.e., du = f, where f can be subjected to various hypotheses, admit a solution
is called the O-problem. Often, the question of extending holomorphic functions beyond a given
domain can be reduced to establishing the solvability of a specific J-equation. The proof of

Theorem 1.5 given below is one such instance. We will see another example in Chapter 4.

Proof of Theorem 1.5. Let f € O(2\ K). We can find a set U € Q such that U is open and
K cU €. Let V be an open set in U such that K C V € U. Now, let x € C2°(C") be such

that

1, ifzeV,

x(2) =
0, if ze U

Define F': Q — C as
(1 =x)(2)f(2), ifz€Q\V,

F(z)= —
0, ifzeV.

As OV CQ\ K, F € C>®(Q). Also, Floy = [.

Now, if we could obtain a correction term, say u, on €2 such that ]}V := F' —u is holomoprhic
on ) and satisfies ﬂ = F‘N, where N is some open subset of Q\ U, then, since Q\ K D Q\U
N

is connected and F |Q\U = f, f, by the Identity Theorem, would be the required extension.
For this purpose, let
Ix :
or | -105 ), taen\v,
¢;(z) = 5(2) = & B
J 0, ifzeV
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and consider the O-problem
S _z
oz 7
where
~ 0i(z), ifze€Q,
¢i(z) =3 " _
0, if z€ C"\ Q,

~ 0 .
Vi =1,...,n. As F € C*(Q2) and @-\Q\ﬁ =0, ¢; € C°(C") Vj =1,..n and % = 8;?]
Zj Zke
Vj,k < n. Hence, by Proposition 1.6, there exists a u € C*(C") such that
ou ~
oz O
Let u := ﬂ‘ﬂ If f:= F—u, then f € O(Q). Also, since supp(gj) C U, j <n, u vanishes on
the unbounded component of TC. But there exists an open set N in the unbounded component
of U such that N C Q\ U. Hence, u‘N = 0 and we have, ﬂN = F|N = f‘N. As observed

earlier, the connectedness of 2\ K implies that fis the required extension. O

We conclude this chapter with a folk result. This result is often quoted, but we were unable
to find a proof in the literature. In the course of finding a proof, we were able to prove a

somewhat more general result. This will be discussed in Chapter 3.

Theorem 1.7. Let ® € O(D) NC(D) be such that ®(0D) C D. Let Q be a connected neigh-
bourhood of S := graph (®) U (0D) x D such that Q@ N D? is connected. If f € O(R), then
f extends holomorphically to D?.

Observe that if we let ® be the constant function 0, then we obtain Theorem 1.1 as a

particular case of the above theorem.






2. Envelopes of Holomorphy

Given the results of the previous chapter, one is now inspired to ask whether, given a domain
Q) C C", a maximal domain can, in some meaningful manner, be produced such that all
functions f € O(f) simultaneously extend to it. Such a domain, if it exists, is called an
envelope of holomorphy of (2. In view of what we know about the maximal domain of existence
of the logarithm in univariate complex analysis, an envelope of holomorphy is not, in general,

expected to be a domain in C". This motivates the following definition.

Definition 2.1. A Riemann domain over C" is a pair (€2, p), where € is a topological space,

and p: 2 — C" is a local homeomorphism.

In this case, a continuous function f : Q — C is called holomorphic (relative to p) if, for

every a € €, there is a neighbourhood U > a such that

. p!U is a homeomorphism onto p(U) C C"; and

e the function f o (p‘U)_l is holomorphic on p(U).

If (,p) is a Riemann domain over C™, a continuous map u : € — ' is called holomorphic
if, for any open set V' C €' and f’ holomorphic on V', the function f’ o u is holomorphic
on u~Y(V’). If, in addition, u is a homeomorphism of 2 onto €' and the inverse is also
holomorphic, then we say that u is an isomorphism. As before, the set of holomorphic functions
on € is denoted by O(2). We will often use the fact that the Identity Theorem holds for

Riemann domains over C" as well.

Now, if f € O(Q), what does it mean to say that f can be continued analytically to another

Riemann domain over C*? This will be clear after our next definition.

Definition 2.2. Let (€2, po) be a connected Riemann domain over C* and S C O(2). We
say that {(X,p);¢:Q — X}, where (X,p) is a connected Riemann domain over C" and

¢ : Q0 — X is a continuous map such that p o ¢ = py, is an S-extension of (€2, po) if, to every
f €S, there is an Fy € O(X) such that Fro ¢ = f.

Remark. Fy is uniquely determined for each f € S. (First on ¢(2), since Ff o ¢ = f, hence
on X by the Identity Theorem). It is called the extension of f to X.

The notion of an S-extension of holomorphy being the maximal domain of analytic contin-

uation of each f € S is captured by the following definition.
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Definition 2.3. Let (€2,pg) be a connected Riemann domain over C* and S C O(2). An

S-envelope of holomorphy of (Q,pg) is an S-extension {(X,p);¢: Q2 — X}, such that the

following holds:

(¥) For any S-extension {(X',p');¢' : Q@ — X'} of (Q,p), there is a holomorphic map u :

X" — X such that p' = pou, ¢ =uo¢ and F; = Fyou for all f € S, where Fy and F}

are the extensions of f € S to X and X’ respectively. An envelope of holomorphy of (€2, po)

is simply an S-envelope of holomorphy with S = O(9Q).

Remarks. (i) Note that w in (x) is unique since it is determined on ¢'(€2) by the equation
uo ¢ = ¢.

(ii) The S-envelope of holomorphy of (€2, py), if it exists, is unique up to isomorphism. In fact,
let {(X,p);0:Q— X} and {(X',p);¢' : Q@ — X'} be two S-envelopes of holomprhy of
(Q,po). Then, by (x) of Definition 2.3, there are holomorphic maps v : X’ — X and v :
X = X' such that p=p'ov, p =pou, p =uo¢ and ¢ =vo ¢, i.e. the following

two diagrams commute:

Xt X 0. x

e o N

(y1<—7—')(, )(‘?E——)(/
p

Then, uovo ¢ = uo ¢ = ¢, so that uwo v is the identity on ¢(£2). Similarly, v ou =
identity on ¢/(€2). Hence by the Identity Theorem, w is an isomorphism of X’ onto X.

Having made rigorous the concept of the envelope of holomorphy of a Riemann domain, we
now proceed to examine whether there exist any Riemann domains for which such maximal ex-
tensions exist. The following theorem establishes the existence of the envelope of holomorphy

for every Riemann domain over C" by an explicit construction.

Theorem 2.4 (Cartan-Thullen, [3]). Let (2, po) be a connected Riemann domain over C"
and S C O(RQ). The S-envelope of holomorphy of (2, po) exists.

For the purpose of proving the above, we first introduce the sheaf of S-germs of holomorphic
functions on C". Let S be a set and a € C". Set

S := {(U,{fs}ses)|U is an open set containing a and each f; is holomorphic on U.}

We say that two elements of &%, say (U, { fs}ses) and (V, {gs}ses), are equivalent if there exists
a neighbourhood W of a, W C U NV, such that, for all s € S, fs‘w = gs‘w.
class with respect to this relation is called an S-germ of holomorphic functions at a. The set

of such S-germs is denoted by O%. The set Og := |J O% is called the sheaf of S-germs of
acCn
holomorphic functions on C". There is a natural projection p = pg : Og — C" defined by

p(f) = a when f € O%.

An equivalence
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Now, a topology on Oy is defined as follows: Let f, € O§ and (U,{fs}scs) be a repre-
sentative of f,. Let f, be the S-germ defined by {f}scs at b € U, and let N(U, {fs}ses) =
{fo|b € U}. The collection of sets

N = {N(U, {fs}ses) : (U, {fs}ses) is a representative of &} ,

forms a fundamental system of neighbourhoods of f,. It turns out that (Og, ps) is a Riemann

domain over C".

Proof of Theorem 2.4. For any (£,po) and S C O(f2), we define a map ¢ = ¢(p,, S) from
Q2 into Og as follows. Let a € Q and ag = py(a) € C". Let U be an open neighbourhood of
a such that pO‘U
defined by the pair (Up, {fs}ses), where fs = so (pO‘U)*l, s € 5. We set ¢(a) = g, That ¢

is continuous and p o ¢ = pg,where p : Og — C™ is the natural projection, is easily verified

is an isomorphism onto an open set Uy C C". Let g, be the S-germ at ag

by examining the definition of ¢ and the topology imposed on Og. Furthermore, p and ¢ are

local homeomorphisms. In view of the relation p o ¢ = pg, ¢ is in fact a local isomorphism.

Since € is connected, so is ¢(€2). Let X be the connected component of Og containing
#(2), and denote again by p the restriction to X of the map p : Og — C". We claim that
{(X,p);¢: Q2 — X} is an S-envelope of holomorphy of Q.

To see this, we first observe that, for all s € S, we have a holomorphic function F, on
Os defined as follows. If g, € OF is defined by (V,{gs}ses), we set Fi(g.) = gs(z). The
holomorphicity of Fy is immediate from the definition of the natural projection p from Og to
C". We denote the restriction of F; to X again by F;. Now, by the very definition of ¢, it
follows that Fs o0 ¢ = s for all s € S. Hence, {(X,p); ¢ : Q2 — X} is an S-extension of (€2, po).

To prove that it is, indeed, the S-envelope of holomorphy of (€2, py), let {(X',p'); ¢’ : @ — X'}
be given with p’ o ¢ = py and suppose that for all s € S, there exists F! € O(X’) such that
s = Flog¢. Let 8" = {Fl}ses and u : X' — Og be the map ¢(p/,S") (defined in the
beginning of the proof). Since F! o ¢ = s and p' o ¢/ = py, we have ¢ = u o ¢ (locally,
Flopt=Flo¢ o dltop =35 opyt). Clearly, p’ = pou. m

Before moving ahead, we must attempt to demystify the above construction. What insight
lies behind realising the envelope of holomorphy of a Riemann domain as a certain path
component of the sheaf of S-germs of holomorphic functions? While exploring the phenomenon
of analytic continuation in univariate complex analysis, one exploits the concept of analytic
continuation along paths via chains of discs. However, this procedure can lead to multi-
valuedness around the initial point when one analytically continues a germ of analytic function
along a closed path. Therefore, we are led to consider the collection of all possible germs of

holomorphic functions — i.e. the sheaf of germs of holomorphic functions over C. Now, given
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a germ f, and a path y starting at a along which this germ can be analytically continued, we
resolve the problem of multi-valuedness by considering a lifting of v to the sheaf of germs of
holomorphic functions and viewing the analytic continuation of (U, f) — i.e. a representative
of fo — as a true function defined on a suitable subset of the sheaf of germs of holomorphic
functions. It is this well-known construction that motivates the choice of Og, or rather, a
suitable connected component of it, as the S-envelope of holomorphy of a given Riemann
domain. In our case, since we try to extend more than one function at the same time, we are

led to work with S-germs.

Proposition 2.5. Let (2, po) be a connected Riemann domain over C* and f € O(Q). Let
F be its extension to the envelope of holomorphy (X,p). Then, f(Q2) = F(Q). In particular,

if [ is bounded, |f(z)| < M for all x € 2, then F is bounded and |F(x)| < M for all xz € X.

Proof. Since f = F o ¢, we have f(Q) C F(X). Suppose that there exists a ¢ € F(X)\ f(Q).
Then, ﬁ € O(Q). If G is its extension to X, then G - (F — ¢) is the extension to X of
1=(f—c)'(f—c),sothat G-(F —c) =1on X. This implies that F(z) # c for all x € X,

a contradiction. 0

Looking back at our intuitive notion of an envelope of holomorphy, we expect to achieve
nothing new by constructing its envelope of holomorphy. To realise this in terms of Riemann

domains, we first make a definition.

Definition 2.6. Let (£2,pg) be a connected Riemann domain over C" and S C O(Q2). Q is
called an S-domain of holomorphy if the natural map of Q2 into its S-envelope of holomorphy

is an isomorphism. If S = O(Q), € is simply called a domain of holomorphy.

That the envelope of holomorphy of a Riemann domain over C" is a domain of holomorphy,
is a consequence of the following proposition. The proof of this proposition suggests why we

might be interested in studying S-envelopes of holomorphy when S C O(1Q2).

Proposition 2.7. Let (Q,po) and (£,p}) be connected Riemann domains over C", and
{(X,p);0:Q— X} and {(X',p');¢' : Q' — X'} their envelopes of holomorphy. Let u : Q —
Q' be a holomorphic map which is a local isomorphism. Then, there exists a holomorphic map
u: X — X' such that the diagram

commautes.

We use the following results to prove the above proposition. Their proofs are elementary,

and we shall skip them.

10
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Lemma 2.8. Let (2,py) be a Riemann domain over C" and f : Q — C™ be a holomorphic
map. Suppose that det(df), # 0 for some a € Q). Then there exist neighbourhoods U of a and
V of f(a) such that f(U) CV and f‘U is an isomorphism into V.

Lemma 2.9. Let (2,po) and (§,p,) be connected Riemann domains over C", and
{(X",p); ¢ : QU — X'} be the T-envelope of holomorphy of (¥, pg), T C O(Y). Let u: Q —

Y be a local holomorphic isomorphism, and let S = { fou|f € T'}. Then, {(X',p');¢' ou: Q — X'}
is the S-envelope of holomorphy of (2, pj o u).

Proof of Proposition 2.7. Let v = ¢’ o u. Since, u and, as was shown in the proof of Theorem
2.4, ¢ are local holomorphic isomorphisms, so is v. Consider the map ¢ = p' ov : Q — C".

The ¢ = (¢4, ...,1y) is also a local isomorphism and each ); is holomorphic on € (relative

am). Then, since ¥ is a
an

local isomorphism, n(z) # 0 for all z € Q. Let ¥; be the extension of ¥, to X, and let

to po). Let n be the complex Jacobian determinant n = det

U = (Vy,...,¥,). Note that U is such that the following diagram commutes:

QoYL x

AN A

XY cn

oV,

Let H be the extension of n to X. Then, by the Identity Theorem, H = det (3 ) By
L

Proposition 2.5, H(x) # 0 for all x € X. Hence, by Lemma 1, ¥ : X — C" is a local

isomorphism. Moreover ¥ o ¢ = 9(=p’ o ¢/ o u).

Now, consider (©,%) and {(X',p));¢'ocu=v:Q— X'}. Let S = {fou|f € OY)} =
{Fouv|F € O(X")}. Since, S C O(Q) (relative to ¢), by Lemma 2, {(X',p');v: Q — X'} is
the S-envelope of holomorphy of (£2,%). Now any holomorphic function on €2 can be extended
to X, so that {(X,¥); ¢ : Q — X} is an S-extension of (£2,1). Since (X', p’) is the S-envelope
of holomorphy of (£2,1), there is a holomorphic map w : X — X’ such that p’ ow = ¥ and

uo ¢ = v,i.e. the following diagram commutes:

v(=¢'ou)

Q X’
¢>j / Lp’
X v cn

This immediately leads us to our desired goal.

Corollary 2.10. If {(X,p); ¢ : Q@ — X} is the envelope of holomorphy of a Riemann domain
over C" (Q,po), then (X, p) is a domain of holomorphy.

11
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Proof. Let {(X',p');¢' : X — X'} be the envelope of holomorphy of (X, p). We see from the
proof of theorem 2.4 that ¢ : 2 — X is a local analytic isomorphism. Hence, by Lemma 2,
{(X",p);¢ o : Q— X'} is the S-envelope of holomorphy of (2, po ¢), where S = {F o ¢ :
F e O(X)}. But S =0O(9). Hence, {(X',p');¢' 0 ¢ : Q@ — X'} is the envelope of holomorphy
of (Q,po ¢). Consider the identity map from (£2,p o ¢) onto (€2, py). Applying Proposition
2.7, we get a map 5 : X! — X such that the following diagram commutes:

id
e

Q Q
¢'o l ) laﬁ
x -2

— s X

Therefore, ?qgo ¢' o ¢ = ¢. This implies that ggo <;5’|¢(Q) = id’¢(9) and, therefore, 50 ¢’ is the
identity on X. Similarly, since ¢’ o 5 oo =¢ o, ¢ o 5 is identity on X’. Hence, ¢’ is an

isomorphism. O

We close this chapter by comparing all of the above concepts with the classical definition
of a domain of holomorphy for a domain 2 & C" (note that this is a Riemann domain (€2, py)
over C", where py is just the inclusion map). In view of the sheaf-theoretic construction of
of the envelope of holomorphy and Corollary 2.10, © & C" is not a domain of holomorphy
precisely if there is a path v : [0, 1] — C" such that:

e 7(0) € €,
e The set v([0, 1]) crosses the boundary of 2, and
e the O(Q2)-germ at v(0) represented by (€2, O(£2)) can be analytically continued along ~.

The following definition — which we encounter when working with domains in C™* — is just

a paraphrasing of the above without reference to any paths ~.

Definition 2.11. A domain 2 C C" is called a domain of holomorphy if there does not exist
any pair (€21, s) of open sets that satisfy the following:

(1) @#Ql C QN €,
(ii) € is connected and 2 C QU Qy; and
(iii) For each f € O(Q2), IF € O(£y) such that f‘Ql = F}Ql.

12



3. A Folk Theorem

In Chapter 2, we saw an abstract construction of the envelope of holomorphy of a domain
Q C C" n > 2 (in fact, we saw this for a Riemann domain spread over C"), but it is very
difficult to infer its geometry. Theorem 1.1 shows that the envelope of holomorphy of the €2
discussed there is D™. This result is proved by exploiting the symmetries possessed by € (€ is
Reinhardt). The aim of this and the next chapter is to deduce the geometry of the envelope

of holomorphy of €2 when it has fewer symmetries.

We start with the following theorem which is, as mentioned in Chapter 1, a generalization
of a folk result (Theorem 1.7). Note that the conclusion of this theorem is same as that of

Theorem 1.1, but 2 is decidedly not Reinhardt in general.

Theorem 3.1. Let ® € O(D*;C" %) N C(ﬁk; C™ %) be such that ®(O(D*)) C D" ", Let Q be
a connected neighbourhood of S := graph (®) U (S1)F x D" " such that Q@ N D" is connected.
If f € O(Q), then f extends holomorphically to D".

Proof. Let f € O(f). Since (S1)* x D" " is compact and © is an open set containing (51" x
ﬁn_k, Je > 0 such that Ann(0;1 —¢,1+ &)* x D(0;1 4+ &)" % C Q. So, for each fixed
w € D(0;1+ ¢)" % we can define

fu(2) = [f(z,w)

which is well-defined and holomorphic in Ann(0;1 —¢e,1+¢)k. As Ann(0;1 — £,1+ ¢ )*

a Reinhardt domain, each f,,, by Theorem 1.3, has a Laurent series expansion as follows:

<f’Ann(0;1f€,1+5)k’ X D(O;1+s)”—’€) (Z,U)) = fw(z) = Z aa(w)za

a€EZk
where
f'w Zl 29, ..
g L H)dz dz
‘zll 1 |Zk‘ 1 Zl k’ak
21,22,...,Zk7w)
oot dakeda, (3.1)
|z1]=1 |2k ]=1 21 S

for all o € Z* and w € D(0;1 + )" *. Using Leibniz’s theorem for differentiating under the
integral sign, we observe that a,(w) € O(D(0;1 +¢)" %) Va € Z*.

13



Chapter 3 : A Folk Theorem

Since graph(®) C € is compact, 36 > 0 such that § < § and A((z, ®(2)); (29, ...,20)) € Q
for every z € D". Fix w € D(0;6)"*. Now, for any ¢ € D(0;1+6) C C and z € (S)* C C*,
(CP(2) +w);] <1+25<1+¢e; j=1,..,n—k, where z; represents the j co-ordinate of

2z € C"*. So, we can define

f(z1, 225 o0y 2k, CP (21, 295 ooy 21) + w)dz &
k---Q21
1|1 2| =1 ZillJrl . Zkock-l—l

for ¢ in D(0;1 + 6). Note that, for a fixed w € D(0;5)"*, we may differentiate under the
integral sign to obtain:

G
¢

n—k .
1 Lz {adﬂik (2, C(2) + w) De(CR(2) + wh|, + 52 (2,(D(2) + w) Ie(CD(2) +w)lu
:(27ri)k /’H‘k Z<13c1+125¢2+1 - 2ok d

—0 V¢ € D(0;1 4 6).

z

Hence, G¥ € O(D(0;1+ 0)) Va € ZF and w € D(0;0)"*
Observe that, if we fix ¢ € D(1;8), (z,(®(2) +w) € QVz € D" and Yw € D(0;5)"*
owing to our choice of §. Hence, we can define

HE(2) == f(2,(®(z) +w) VzeD,

where ¢ € D(1;0) and w € D(0;6)" " H¥(z) € C(ﬁk) N O(D*). As D is a Reinhardt domain,

by Theorem 1.3 , there exists a Laurent series expansion for H" as follows:

= Z ba<wa OZ

aEZk
where b, (w, ) is uniquely determined by the following expression:

21,22,“.,2 )

041+1 1
Zkl 1 Zl . ]Cak+

ba(w, )

dzy...dz. (3.2)
|

z1|=1

As D* is a Reinhardt domain containing 0, b, (w, ¢) vanishes for any o € A := {a € ZF :
a; <0 for some j =1,...,k}. But

14



Chapter 3 : A Folk Theorem

Hév(zlw”azk) d d
a1 P Z...A21
|z1]=1 |z |=1 Zl B
f(z1, ey 2, CP(21, ooy 21) —l—w)d J 3.3
et e 2k dzy (3.3)
2m |z1]=1 |z |=1 21 cc 2k

= G¥(¢) V¢ € D(1;6) and o € ZF.

From 3.2, 3.3 and our choice of w and ¢, we have G5 =0 Va € Aand w € D(0; o)k,
We have shown that G¥ is holomorphic in D(0;1 + §) 2 D(1;0). Hence, by the Identity
Theorem, G¥ = 0 Va € A and w € D(0;6)"*. In particular, G¥(0) = 0 Va € A and w €
D(0;6)"*. Refer to (3.1) and observe that G¥(0) = a.(w) Vo € ZF and w € D(0;6)"*.
Hence, due to the holomorphicity of each a,, we can apply the Identity Theorem to conclude
that a, = 0 Va € A. Therefore, in fact,

flz,w) = Zaa(w)zo‘

a€ENF

in Ann(0;1 —¢&,1+¢)* x D(0;1 + )" *. Now, define f : D" — C as
f(z,w) = Z aq(w)z*
a€eNk
and observe that for each fixed w, the series on the right-hand side converges absolutely on

D" *. Hence, f € O(D") and f :
Ann(0;1—e,1+€)k x D(0;14¢)n—F Ann(0;1—e,1+€)k x D(0;14¢)n—*
Since  is a connected neighbourhood of Ann(0;1 —¢,1+ ¢)¥ x D(0;1 + &)"*, we conclude

that f is the required extension of f. O

The following result about the geometry of the envelope of holomorphy of the €2 described

in the previous theorem is nearly immediate.

Corollary 3.2. Let Q) be the domain described in Theorem 3.1. If (ﬁ,p) denotes the envelope
of holomorphy of €2, then p(ﬁ) contains D™.

Proof. As QN D™ is connected, {QUD" i : Q — QUD"} is an O(Q)-extension of (€2, py),
where pg : QU D" — C" is the inclusion map. Referring to Definition 2.3, we see that
3 a holomorphic map u : Q UD™ — X such that py = p o u. Hence p(u(D™)) = D" ]

15






4. The Chirka-Rosay Extension Theorem

This chapter is devoted to studying a very surprising theorem by Chirka. For this purpose we

need a definition. A Hartogs figure in C" is a domain of the form that appears in Theorem 1.1.

Theorem 4.1 (Chirka, [5]). Let ® € C(D) be such that ®(0D) C D and and satisfies
supg |®| < 1. Let Q be a connected neighbourhood of S = graph(®) U (0D) x D such that
QN D? is connected. If (fNZ,p) denotes the envelope of holomorphy of €2, then p(SNZ) contains a
Hartogs figure.

We urge the reader to compare the above theorem with the folk theorem stated in Chapter
1 (i.e. Theorem 1.7). Its hypothesis would resemble that of Theorem 1.7 but for one stark
difference: ® above is merely continuous, and is permitted to be extremely non-smooth. This
is what makes Chirka’s theorem a very unexpected result. Referring to Chapter 3, we see that
the proof of the folk theorem indeed proceeds by first showing that any f € O(Q) extends
holomorphically to a Hartogs figure. The conclusion of the above theorem is somewhat weaker

than this. We will remark upon this difference at the end of this chapter.

The following proposition, which claims the existence of a solution to a particular non-
linear O-bar equation, is an essential ingredient in the proof of Theorem 4.1. The bulk of this
chapter is devoted to its proof. This proposition was undertaken by Rosay and Chirka with
the aim of simplifying Chirka’s original proof in [5]. In that proof, Chirka worked with very
different Banach spaces from those used below, which had resulted in much more complicated

estimates.

Proposition 4.2. Let F be the space of continuously differentiable functions defined on C2?,
with compact support. Then, for every i) € F, there exists a unique f defined on C, tending

to 0 at infinity, which is a solution to

of

e = V(. f(2)) (4.1

This solution depends continuously on ¢ € F if the support of 1 is restricted to be in a given

compact set, and if we use the sup norm for f and the C' norm for 1.

The above proposition, in conjunction with Theorem 4.6, yields Theorem 4.1. In the proof

that follows, a few ambiguities in Chirka and Rosay’s proof have been resolved. For this, we
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Chapter 4 : The Chirka-Rosay Extension Theorem

need the following quantitative version of the Implicit Function Theorem (the gaps in Chirka
and Rosay’s proof seem to arise from the lack of a clear statement of the Implicit Function

Theorem used therein).

Theorem 4.3. Let E; and Ey be Banach spaces and © : E; x Eo — E; be such that © €
CYHE; x Ey). Suppose a = (a1, as) € Ey x Ey is such that

e O(aj,az) =0,

e 0,0(ay,ay) : E; — Ky is invertible; and

e both 0:0(ay,as) and [0,0(ay,as)]™' are bounded.

Let A := H[@l@(al,ag)]_1‘ and (81, 02) be so small that

Eq1

10:6(x) — 016(a) ||, <L
18:0() — 020(a)l|i, -, 2A

Vz € Bg,(a1;01) X Bg,(ag;09). Then, there exists 0 : Bg,(as;d2) — Ey, 6 € C'(Bg,(as;d2))
such that 0(as) = a; and O(0(xs),x2) = 0 Vas € Bg,(az;d2).

It is now time to fix, once and for all, the Banach space in which we will seek a solution to
equation (4.1). For this, let

&= {f € C(C) : % exists and belongs to Co(C) in the sense of distributions} :

The space € is equipped with the norm || f||le = sup(|f| + |2L]). It can be easily verified that

(&, |l - lle) is a Banach space. Working with this space simplifies the problem as, for f € &,

equation (4.1) is equivalent to
1
= ) 4.2
f= (e 1) (4.2

To see this, let f; be a continuous solution of equation (4.2). As v is compactly supported

in C?, and, consequently, @Z : 2z = (z, f(2)) is compactly supported in C, we can set K :=

sup{|y| : y € supp(¢)}. Now, for |z| > K + n,

A6 =| [ syt Fw)aAw
C

<sup [¢] /

supp ()

N
(z —w)

’ dA(w) (4.3)

sup [¢)|
™

< A, Ais a constant independent of ¢ and z.

18



Chapter 4 : The Chirka-Rosay Extension Theorem

Hence, |fi(z)| — 0 as |z|] — oo. Lastly, integrating the right-hand side of equation (4.2)
against 0¢/0z, where ¢ € C¥(C), yields — [.1(z, f(2))¢(2)dA(z). This implies that any
continuous solution of equation (4.2) belongs to £ and is, indeed, a solution to equation (4.1)
in the sense of distributions. Conversely, if f, € £ is a solution of (4.1), then it can differ
from f; by a holomorphic function, say h. But, as both f; and f; vanish at infinity, h = 0.
Therefore, we can now shift our entire focus to equation (4.2), looking at which, it is possible
to guess how the Implicit Function Theorem might have a role to play. We also need to choose

a Banach space for 1. Let

Fo :={¢ € Co(C?) = supp(yp) € D?}.

There is no loss of generality in restricting the support of ¢ to the unit polydisc. We will

require ¢ in equation (4.1) to belong to (Fo, || - ||1), where || - ||; is the C! norm.

We are nearly ready to prove Proposition 4.2. The following result is an extremely crucial

component.

Lemma 4.4. Let h € £ be such that

oh
(i) EE has compact support ; and
z

h
(ii) for some constant C > 0, —_‘ < C|h|.
Z
Then, h = 0.
Proof. We use the method of integrating factors. The aim is to obtain a factor p, bounded at
O(uh
infinity, such that ph is holomorphic in C, i.e., % = 0. For this purpose, define
z
Oh/0z
A=—
h

at the points z where h(z) # 0, and (say) A(z) = 0 if h(z) = 0. A is bounded and has
compact support due to (i) and (i) respectively. Consequently, we can define u := é * .
We observe that

a) w is continuous,

b) |u(z)| — 0 as |z| — 0; and
ou

c) 5= A in the sense of distributions.
z

a) is a consequence of the Dominated Convergence Theorem, while b) and ¢) can be proved
by repeating arguments used while establishing the equivalence of equations (4.1) and (4.2).
Set p := e*. Then, d(uh)/0z = 0 off the zero set of h. But ph is continuous everywhere and
tends to 0 at infinity. Hence, by the Maximum Modulus Theorem — applied to ph on each
connected component of C\ h~1{0} — h = 0. O
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We will also employ the following estimate. It can be derived using, as in the proof of
Lemma 4.4, the technique of integrating factors followed by the Maximum Principle. We just
have to make a careful record of the magnitude of the relevant partial derivatives encountered.

Since this estimation is essentially routine, we leave the details for the reader to fill in.

Lemma 4.5. For every M > 0, there exists Cyy > 0 such that, for every & € £, and every
continuous function x with support in the unit disc {z € C : |z| < 1} satisfying |x(2)] <
MI&(2)|, we have

le= 5> et

Proof of Proposition 4.2. Uniqueness. Assume f, g € £ such that 0f/0z = ¢(z, f(z
09/0z = ¥(z,9(2)). Set h = f —g. Clearly, h € £ and 0h/0z = (z, f(2)) — ¥(z,9(2)) is
compactly supported. Also, as ¢ € CL(C?), IR > 0 such that |[¢(z, f(2)) — ¥(2,9(2))] <
R|f(2) — g(z)|. Hence, by Lemma 4.4, h =0, i.e., f = g.

Existence. It suffices to prove the following claim:

(%) Forevery M > 0, there exists epr > 0 such that if v € Fo with ||¢]1 < M, and if equation
(4.2) is solvable (with f in &), then for every o' € Fy satisfying || — '||1 < enr, the

equation [’ = i x (2, f'(2)) is solvable, and f' depends continuously on 1.

For, if we are seeking a solution to equation (4.2) for ¢» € Fy, we let n € N be such that
1< > where e, corresponds to M = l]]1 as in (). Letting @Zj = Ly, j < n, we connect,
in finitely many steps, ¥ to 0. Equation (4.2) is trivially solvable for 0.

The problem has now been reduced to a claim which facilitates the application of the

Implicit Function Theorem mentioned above (Theorem 4.3). We define © : € x Fy — £ as

O (f.4) > [~ — (= f(2)).

Let M > 0 and ¥° € Fy be such that |[¢°; < M and 3f° € & such that 9f°/0z =
P0(z, f2(2)), ie., O(f° %) =0. If © and a = (f°,¢°) satisfy the conditions of Theorem 4.3,
then we obtain a d, such that equation (4.2) is solvable for all ¢ € B, (1% ;). This proves
(x) but for one obstruction. We emphasise here that, in general, the d, > 0 in Theorem 4.3
will depend on the point a and the value of the corresponding A. Our aim is, therefore, to
show that:

1) © and a = (f°,¢°) satisfy all the hypotheses of Theorem 4.3; and
2) d3 can be made indepedent of the point a = (f, ), as long as ||¢|| < M.
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Remark. Observe that ¢; is free to depend on the point a. This important observation will be

exploited in the pursuit of our second aim.

Step 1. We now itemise and prove the various components of our first aim. We keep in mind
that the d-derivative of the function f — L x(z, f(2)) is 0f/0z — (2, f(2)).

a) ©® € C'(E x Fy): Evaluating O at (f +&,1), where £ is an infinitesimal increment, leads
to the differential

00, V€)= € = — 5 [Yu(z, F2))EG) + valz, T(2)EG) (1.4

Similarly, evaluating © at (f,1 + n), n an infinitesimal increment, we obtain

0,0(f.0)(n) = — * (=, f(2). (4.5)

TZ
The continuity of ©,0;0 and 0,0 in both the variables is manifest.

b) 8:0(f°,°) is bounded: For the sake of convenience, let, for £ € &,
ag(2) = vz, f2(2)6(2) + vg(z, fO(2))E(2), = € C.

We see that |ag(2)] < [[€]lel|4°]l1. Thus,

weC Tz

o101 )€ =sup {|stw) — (- +02) ()] + [ GEw) - aw)}

1
<lelle [1+ 1070 [ || aac) -+ et + el
D

1
Tz

dA(z)

<llle |2+ M 1+/

D

Hence 9,0(f°,4°) is bounded and its operator norm is bounded above by a constant, say Cf,

depending only on M.

c) 8:09(f°, ) is invertible: Let Z: £ — £ be the operator

£ [0 (2, P(2)EG) + 98, FPEER) = — »al(2).

T2

We claim that = is compact. For this, let V' C &€ be open and bounded and U := Z(V). Let
L > 0 be such that ||¢||¢ < L V¢ € U (L exists as = is bounded). Define U := {¢ € C}(C)NE :
|6]|le < L+1}. Being a bounded set in (C2(C)NE, ||-||¢), U is equicontinuous as a consequence

of a standard estimate that involves the generalised Cauchy integral formula and exploits the
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uniform bound on the d/0z-derivatives. Now, for any ¢ € U, as 9(/0z € Cy(C) in the sense of
distributions, there exists a sequence {¢, }nen in Co(C) such that sup |¢, —C/0z| — 0 as n —
co. Now, let ¢, == = * dn, n € N. Then, ¢, € CH(C) N & and ¢, converges uniformly to
¢ as n — oo. Without loss of generality, as {¢,}nen converges to ¢ in the || - ||¢ norm,
|onlle < L+ 1, n € N. Thus, every ¢ € U is the uniform limit of some sequence {¢, }nen in
U c CLC)NE. As equicontinuity is preserved under the action of taking uniform limits, U is
also equicontinuous. Further, since ag(z) is compactly supported on C, we repeat arguments

used earlier (refer to (4.3)) to obtain estimates as follows:

2l > 14+n=[2(€)(2)] <

Alléllellvll o AL vEev.
™

™ -

Thus, U is bounded, equicontinous and given € > 0, there exists a compact K C C such
that |((z)| < e Vz ¢ K and V( € U. This tells us that U is totally bounded and, hence,
pre-compact in (Co(C) N E, || - |lw)- It is, as a consequence, easily verified that U is, in fact,
pre-compact in (&, | - ||¢).

Coming back to 9;0(f°,4°), we have just shown that it is the perturbation of the identity
by a compact operator. So 9;0(f°,¢°) is a Fredholm operator of index 0. This means that

dim[kerd,©(f°,4°)] =dim[cokerd; O(f°,¢°)] and the range of 9;0(f°,1°) is closed. Thus, to
achieve (c), it is sufficient to show that ©(f°, ") is injective. Now, if 9;0(f°,4°)(£) =0, i.e.,

1
§= — * ag(z)

then, then, it is easy to conclude that £ satisfies the hypotheses of Lemma 4.1. Therefore,
¢ =0, whence 9;0(f°,¢4°) is invertible.

d) [0:1O(f°, %) is bounded: As 9;0(f°,¢") is surjective, any ¢ € £ can be written as

€ — 7z * o¢(2) for some € € £, ie., [010(f°, )] 7H(¢) = & Also, |og(2)] < [¥°]5[6(2)] <
M|&(z)]. Hence, by Lemma 4.5,

1210, v")] Q)| < Call¢lle,

where Cy = CLM depends only on M.

Step 2. To achieve our second goal, we first observe that 0,0 is uniformly continuous in the

second variable, while 3,0 is altogether independent of it. Therefore, de;; > 0 such that

1

19" =9l < em = 10:0(f,9') = O ¥)lle < 17
2
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for all f € £ and 1) € Fy such that ||¢||; < M. Now, let v > 0 be such that

If = fOlle <’ =

4C,

I0,0(1,0%) — 0,0, ") e }<J;
0:01(7.0°) = 3O, 005,

Thus, Y(f,v) € Be(f1°) x Br, (4% enm),
||81®(f7 ¢) - 61®(f0,¢0)||5 < ||81@<f7 ¢) - 81@(f7 wO)HS + ||al®(fa ¢0) - al@(f07¢0)||5

1 1
=2G, = 20000, o0 e

and

oy !
708 = 0000, 001

1820(f, ) = 020(f°, ¥") [ 7yse = [1020(f,9°) — 0:0(f°

Hence by Theorem 4.3, there exists 6 : Br, (v%en) — &, 0 € C(Bx,(¥°;¢)) such that
6(¢°) = [ and O(0(v),v) = 0 Voo € Br,(¥";en), i.e., equation (4.2) is solvable for v, a
solution being 6(1), Vi € Bz, (¢°;e)r). But, since )y depends only on M, the above proof
can be repeated for any 1 € Fy as long as |[¢]l; < M and f = L x1(z, f(2)) is solvable with
fin &. O

The above proof does not work in higher dimensions. It breaks down when one tries to
imitate Lemma 4.4. If we were solving this problem in C?, for instance, we would require a
solution, in some subspace of Cy(C; C?), to df = 1, where ¢» € C(C3;C?). But it is not true

that
Ohy

0z

0h2
0z

and vanishing at infinity, imply hy = hy = 0. For this, take h; = hy = 1/z for |z| > 1, and

extend them in the unit disc such that h; and hs never vanish simultaneously. The required

inequalities clearly hold for all C' > 0 outside the unit disc. Within the unit disc, we can
[0h:/02] . _ |,

— i =1,2.

|ha| + | Aol

obtain a bound on

The next key result is a paraphrasing of a result known as the Chirka-Stout Kontinuitatssatz

that is usable in the situation of our interest.

Theorem 4.6 (Chirka-Stout, [7]). Let X be a domain of holomorphy in C% Let Q be a
subdomain of X and let D € Q be a relatively compact open subset. Suppose ¥ : Dx[0,1] — X

1 a continuous function with the following properties:
e For each t € [0,1], the set ¢y := U(D x {t})\ D is a complex-analytic subvariety of
X\ D.
e There exists a t° > 0 such that Yo # 0 and such that 1, C Q Vt < 0.
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Let ((NZ,p) denote the envelope of holomorphy of Q. Then 1, C p((NZ)

We want to emphasise that the original Chirka-Stout Kontinuitatssatz is much more general
than the above statement, and examines the relation between continuous families of holomor-
phic p-chains and the envelopes of holomorphy of domains of arbitrary dimensions. Its proof
involves some sophisticated facts about complex-analytic subvarieties that I am not currently
familiar with (e.g. Bishop’s Theorem on the limits of analytic sets, Wirtinger’s Inequality,

etc.). Hence, Theorem 4.6 will be used without proof.

Proof of Theorem 4.1. Let ® and ) be as given. Let € > 0 be so small that Ann(0;1—2¢,1+
2¢) x D(0;1+¢) C Q. Construct ® : C — C such that it has the following properties:

« & e CYC),
% |®(2) — ®(2)| is so small, for |z| < 1 — ¢, that gmph(gf)}D(o,lia)) C ©; and

« ®(2) =0, Vz such that |z| > 1.

Define S := graph(cf) U 0D x D. By construction, S C Q. Let U and D be two open sets in
Q) satisfying:
ScUccDccQn(D0;1+¢)xC).

Let x € C¥(C?) with
x x {1} = U; and
x supp(x) C D.
Finally, define the continuous family of functions {F} : t € [0,1]} C CL(C?) by the equation

Fi(z,w):=(1- t)X(z,w)g—f(z) V(z,w) € C2,

Consider the family of PDE’s:

W)= R (hed) (46)

Here, £ is as in the proof of Proposition 4.2. Note that

supp(Fy) = supp(Fy) Vs, t €[0,1].
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Thus by Proposition 4.2, (4.6) admits a unique solution in &€ for each ¢ € [0,1] and these

solutions vary continuously (w.r.t. the sup norm). By uniqueness (in &),

fo=®, and (4.7)
fi=0. (4.8)

Now, let X := D(0;1+2¢) x C and © := QN X. Note, by construction that D CC ®. Define
U:Dx|[0,1] - X by
WG 1) = (14 26)¢, ful (1 +22)Q)).

It is clear that W(D x {t}) = graph (ft|D(0_1+2€)>
U is continuous. Lastly, pick a (2o, wp) in X \ D such that (z,w) lies on ¥(ID x {t}) for some

t. 35 > 0 such that B((z0, wo);0) C X \ D. Let

, i.e., these are submanifolds of X; and that

w = (B (20, wo); §) N T(D x {t})),

where 7, := the projection onto the z-axis. Note that

8_\11
0z

ccw= ey = 1 e ne)

o (&) =0.

Since B ((z0, wo); ) N (D x {t}) = graph(fi) N B((20, wo); ), we have thus shown that:
Yy # 0 = 1), is a complex-analytic submanifold of X \ D (4.9)

where ¢, := (D x {t})\ D. In other words, all the requirements of the Chirka-Stout Konti-
nuititsatz are met (with © playing the role of © in Theorem 4.6). So, if (D,7) denotes the
envelope of holomorphy of ©, then owing to (4.7)—(4.9),

[ty U (DN {w=0})]UAnn(0;1 —2¢,1+2¢) x D(0;1) C 7(D).

Since w(®) is an open set, Ir > 0 small enough, such that the Hartogs figure
H := (D(0;1) x D(0;7)) U (Ann(0; 1 — 22,1+ 2¢) x D(0;1)) C (D). (4.10)

Now, note that f € O(Q) = f|53 € O(D), whence every f € O(Q) extends to D, i.e., (D, )
is and O(Q)-extension of . Thus, there exists an analytic w : D — Q such that T = pou.
Now,

p(2) Dpou(®) =n(D)).

Hence, in view of (4.10), p(Q2) contains the Hartogs figure H. O
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Chapter 4 : The Chirka-Rosay Extension Theorem

In a widely circulated preprint of Chirka’s theorem, the conclusion of Theorem 4.1 was
stated thus, “ If f € O(Q), then f extends holomorphically to D?.” (Compare with The-
orem 1.7). However, this stronger conclusion was found not to be supported by Chirka’s
arguments. Intuitively: when two complex-analytic sets 1 and ¢, s # ¢ (in the notation
of the above theorem) intersect at a point — which is not ruled out by Chirka’s methods —

multi-valuedness of the attempted extension of f can result.

In [5], Chirka also asks if Theorem 4.1 is valid in the multidimensional case — i.e., when
o = (<I>1, ...,CIDn) is a continuous D"—valued map with n > 1. Rosay [14] showed that the
theorem fails, in general, for higher dimensions. Thereafter, several attempts were made to
address Chirka’s question for vector-valued maps with component functions belonging to a
proper sub-class of C(D;C). In Chapters 6 and 7, we describe the underlying techniques of

some successful attempts in this direction.
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5. Merker and Porten’s Proot of the Hartogs

Extension Theorem

In this chapter, we move away from Hartogs-Chirka type of configurations to examine another
well-known result by Hartogs which states that all holomorphic functions in a connected
neighbourhood V(99Q2) of 902 € C", n > 2, extend holomorphically and uniquely to the
domain . Recall that we have already seen a proof of this in Chapter 1 (Theorem 1.5).

Often, analytic-continuation results rely on some variation of the method of analytic discs
— a technique for achieving analytic continuation of a holomorphic function f € O(€;) to
a larger domain €2y, that involves extending the function along continuously varying analytic
discs/varieties which eventually fill up €2, but remain attached to €; along their borders.
However, the standard proof of Theorem 1.5 that we saw in Chapter 1 uses no such ideas.
The main challenge in rigorously proving this result using merely the tool of analytic discs lies
in establishing the single-valuedness of the extension. Understanding this is our motivation
to revisit the Hartogs phenomenon described above. In their paper [11], Merker and Porten
successfully tame the issue of multisheetedness by using the method of analytic discs for
local extensional steps and some Morse-theoretic tools for the global topological control of
monodromy. Several details of their proof are technical and elaborate, and hence, cannot be
presented here. But, we would like to present a broad outline of their ideas. We first state

the extension theorem.

Theorem 5.1. Let Q €@ C" be a bounded domain having connected boundary. If n > 2, every
function holomorphic in some connected open neighbourhood V(02) of 0 extends holomor-

phically and uniquely inside §2, i.e.,

Ve OW(0R)), 3 aunique FF € O(QUYV(0R)) such that F‘wam = f.

An outline of Merker and Porten’s proof

Some remarks on the notation used in this proof:

(i) For any given F C C", E., will denote the set EN{z: ||z]| > r}. In some places, the
subscript “> r” is used for objects F which are not globally defined. In those cases, the

relevance of “> r” will be contextually clear. For instance, for a given hypersurface M,
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Chapter 5 : Merker and Porten’s Proof of the Hartogs Extension Theorem

M-, == Mn{z :||z|]| > r}, while the components of M, are labeled as M¢

>r,1§C§C,\.

Me¢, however, is not globally defined.

(ii) The domains bound by MS, and {z: ||z|| =r} are denoted by Q¢,. Here, the tilde

notation indicates that Q;T may not be contained in the the domain 25, bound by M.

(iii) For any subset £ C C" and § > 0, V5(E) := UpepB"(p,d) denotes the tubular neigh-

bourhood of F with cross-sectional radius §.

e Step 1: We perturb 052 to a C*°—smooth connected oriented hypersurface M & V(09) for
which the restriction to M of the Euclidean-norm function z + ||z|| is a Morse function with
only finitely many non-degenerate critical points py € M, 1 < XA < g, with ||p1|| < -+ < ||Dx]]-
If V(0Q) is a thin tubular neighbourhood Vs(M) contained in V(0f2), with cross-section
0 < 0 < 1, then V(0€2) and € in Theorem 5.1 can be replaced by V(02) and §2y, := the

domain enclosed by M, repsectively.

e Step 2: Let 7\ := ||pa]|. For any arbitrary fixed radius r with 7\ < r < r);1, and some
1 <c <y, of

the cut-out hypersurface M N {||z|| > r}. Their number ¢, is the same for all r € (7, Tx+1)-

fixed A with 1 < XA < k — 1, consider all the connected components M<,,

We show that each connected hypersurface MS,. C {z:||z|| > r} bounds a certain domain
Qc, C {z:]|z|| > r} where

(Z; := the domain bound by M<S, and {z : ||z|| = r} that is relatively compact in C".

One subtlety: to retain connectedness, we must consider a slightly modified neighbourhood
Vs(M.,)s, of M., instead of considering the neighbourhood Vs(M) N {z: ||z|| > r} of M.,

(we will elaborate on this later in this chapter).

e Step 3: Now consider a modification of the Hartogs figure, called the Levi-Hartogs figure,

defined as follows:

LH., e, = {15133{—1 |zi| < e, |on| <e1, —e2 <yn < 0}

U {51 —(a1)*< max z] < e [ <en, ya| < 52}-

By computing the Cauchy integral on appropriate analytic discs whose boundaries remain
in LH., .,, we conclude that holomorphic functions in this (bed-like) figure extend holomor-

phically to the full parallelopiped
LHe, ey = { max |zi| < e1, |xn| <er, |yn] < 52}.

1<i<n—

The Levi-Hartogs figure is used to produce holomorphic extension from cut-out domains
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Chapter 5 : Merker and Porten’s Proof of the Hartogs Extension Theorem

{z :||z|| > r} N Qs such that the radius r can be reduced by a uniform amount after which
the same procedure is repeated. In other words, we can deduce analytic continuation to €2y,

by induction.

Step 4: To handle the phenomenon of multivaluedness effectively, we need to deal with the
components M, 1 < ¢ < ¢y, separately. The following proposition talks about analytic

continuation in Q.

Proposition 5.2. Fiz a radius v satisfying v\ < r < Txy1, for some X with 1 < A < k — 1.
Then, for each ¢ =1, ...,c5, and for each function holomorphic in Vs(M.,)s,, its restriction
to a neighbourhood Vs(MS,), of M<, extends holomorphically and uniquely to ﬁ;r by means

of a finite number of Levi-Hartogs figures.

Main ideas in the Proof: For filling the top of the domain Q),— ie., for A\ = x — 1 — we
observe that the single component §>r =: Qup, 7 € (Tx_1,Tx), is diffeomorphic to a cut-out
piece of the ball. Placing Levi-Hartogs figures successively (as we shall see later), we can
descend from r to r — n (as long as r —n > 7,,_1) for some uniform 7 with 0 < n < 1 that

depends on the dimension n > 2, on § and on the diameter of €.

For descending below 7_1, we need an inductive procedure that helps us

A: fill the domains through intervals of the form (r/,7”) such that 7y < ' < 1" < Tyy1,
A=1..,k—2;and

B: jump across singular radii.

For A, we can show that certain advantageous topological properties hold for every one of
the cut-out domains associated to (r’,7”). For instance, the region bounded by the hyper-
surface M and any two spheres of radii ' and ", with 7', 7" € (7,Txy1), is diffeomorphic
to a finite union of tube-like domains. Placing Levi-Hartogs figures successively yields holo-
morphic extension along these tube-like domains. Another important property is that two
different domains (Nlir and Sng“T are either disjoint or one is contained in the other. Con-
sequently, multivaluedness will occur only if Q%, C Q‘;; (or vice-versa) and two uniquely

defined holomorphic extensions f@ to Q% and f% to Q% differ on Q2.

Accomplishing B proves to be more complicated as, unlike in the case A, the collection
of domains §C>r may undergo significant topological changes. Owing to the nature of Morse

functions, three different topological processes may occur:

. . ’Vc/ .

1. creation of a new component QS _

33 P ~ . ~

ii. merger of two components 2, and QZ, into Q<,_,; and

iil. disappearance of some component Q¢ with the property Q5. & Q.
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created

FIGURE 1 Creation, merger and disappearance of components.!

The type of topological change, and hence, the procedure required to analytically continue
the holomorphic function in question depends on the Morse index k) of the singularity py.
The proof is further divided into three steps corresponding to the cases ky = 0 and 2n — 1,
2 <ky<2n-—2and k), = 1. It is in the last case that the question of suppressing the analytic
continuation determined by a disappearing component arises. Merker and Porten devise an
easy, yet efficient, tool to keep track of the components which need to be subtracted to avoid

mulitvaluedness. [

e Step 5: Finally, we apply Proposition 5.2 to the single component 0 (e < 9) to obtain

>7r14e
the conclusion of the extension theorem.

Preparation of the boundary and unique extension

In the above outline, the first step — the preparation of a ‘good’” Morse boundary — al-
lows us to control the global topology of the cut-out domains Qy N {z:||z|| >r}. We
now describe this construction. Let d; > 0 be so small that the tubular neighbourhood
Vs, (082) := UpeaaB™(p, d1) lies entirely in the initial neighbourhood V(0€2). Then, choosing a
point py € C™ such that dist(py, Q) = 3, center the coordinates (21, ..., z,) at py. Consider the
function r(z) : z — ||z||. By standard results in Morse theory ([10, Chapter 6, Theorem 1.2]),
we can find a C>*°—smooth, connected and oriented hypersurface M C Vs, /2(052) such that
ru(z) = r(z)| o 18 @ Morse function with only finitely many non-degenerate critical points
Pr € M, 1 <\ <k, and M bounds a unique domain Q,; with Q C Q,; U V(99). Moreover,
using transversality arguments, the point py, can be chosen in such a way that the critical
points of ry; lie on different level sets of r, i.e., 2 < rpy(p1) < -+ < ray(py). Such an M is

called a good boundary.

Mlustration taken from Merker and Porten [11], Section 1.
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We now need to verify that the Hartogs theorem can be reduced to proving a version

involving a good boundary M replacing 02 (and ), replacing 2).

Lemma 5.3. Suppose that for some 6 with 0 < 6 < 61/2 so small that Vs(M) is a thin tubular
neighbourhood of the good boundary M, the Hartogs theorem holds for the pair (2, Vs(M)).
Then, the Hartogs extension property holds for the given pair (Q, V(0Q)).

Proof. Let f € O(V(092)). Then, the restriction of f to Vs(M) admits an extension Fs €
O(Qp UVs(M)) by hypothesis. As Q C Q2 UV(I9), it is enough to show that Q2 N V(0NQ)
is connected. This is because f and Fj already coincide in Vs(M) N Qy C V(092).

Let p, ¢ € Qy NV(0). Then, there exists a C>*°—smooth curve v : [0,1] — V(99)
connecting p to ¢. If Image(y) C Qu, we are done. If not, then Image(y) must cross M.
If Image(y) meets M, let p’ be the first point on Image(y) N M and let ¢’ be the last one.
Now, modify v by joining p’ to ¢’ by means of a curve p entirely contained in the connected
hypersurface M. Now pushing u slightly inside €2, one gets an appropriate curve running
from p to g inside Qy; NV(0K2). Thus, Q) NV (01N) is connected. Now to complete the proof,

define the required extension as

Fs, in Q) U V(;(M),
f, in V(09Q).

F =

]

Here, we would like to remark that several modern approaches to analytic-continuation
problems rely upon making such “admissible” changes to the geometry of the given configura-
tion. Such a move is quite essential when 2 has — unlike the theorems in Chapter 1 — very

few symmetries. We will see instances of this in the following chapters (Chapters 6 and 7).

In view of the above lemma, we must — in order to prove Theorem 5.1 — show that the

pair (2,7, Vs(M)) has the Hartogs extension property.

Global Levi-Hartogs filling from the farthest point

In order to demonstrate Merker and Porten’s method of analytic discs for local analytic
continuation, we will summarize the main ideas that go into filling up the domain (with Levi-
Hartogs figures) from the farthest critical point p, to the next critical point p,_;. This will
also shed some light on the procedure employed to fill up the domain through intervals of the
form (r/,7") such that 7\ < 7" < 1" < 7r\y1, A = 1,...,k — 2. The procedure for extending
any f € O(Vs(M)) to the portion of €y, lying between two level sets lying on either sides

of a critical level set {z : ||z|| = Ta}, A = 1,..,k — 1, is very technical, and breaks up into
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Chapter 5 : Merker and Porten’s Proof of the Hartogs Extension Theorem

several cases. It will not be possible to do justice to this procedure in this report. However,
the procedure for extending f € (’)(V(;(M )) in the portion of €, lying above the level set
{z : ||z|| = Tw_1} already reveals several key techniques. These are the techniques we shall

discuss.

(i) Preparing the Levi-Hartogs figure: It is first important to understand how the Levi-
Hartogs figure introduced in Step 3 in the above outline of Merker and Porten’s proof

can be used in our situation. We will use the following notation:

e Forr e Rwithr >1andd € Rwith 0 < <1, let &7 = {r < ||z|]| <r+ 5}

o Fora RC S !:={z¢eC":||z|]| = r} open in the relative topology of S**~1 we
define the (radial) rind of thickness n > 0 around R as Rind(R,n) := {(1 + s)z :
z € R, |s| <|nl/r}.

e For any subset £ C S?* ! and § € R with 0 < § < 1, define Shell’™(E) :=
UpeeB" (p,6) N {z : [|2]| > r}.

We now observe that, given § > 0 and p € S?"~!, we can find &;, &, and some composition
of a translation and a unitary map, say ®,, that sends the origin to p, the real-tangent
plane TyLH., ., to the real-tangent plane 7,52"! and the whole of LH,, ., inside the

shell ST, Additionally, ®, can be chosen in such a manner that <I>p(£@2) contains
52

a rind of thickness c%- around some region R, C S~ whose (2n — 1)-dimensional area

only depends on §. From this fact, we can deduce the following crucial proposition:

Proposition 5.4. Let R C S?"! (withr > 1 and n > 2) be a relatively open set having
C*®—smooth boundary N = OR and let 6 € R with 0 < 6 < 1. Then, holomorphic
functions in Shell’™(RUN) extend holomorphically to a rind of thickness c% around R

by means of a finite number of Levi-Hartogs figures.

Shelll**(RU N)

on-1__.- Rind(R,c62r-1) e

-~

FIGURE 2 Extensions from a pseudoconcave piece of shell.?

Mlustration taken from Merker and Porten [11], Section 3.2.
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Here, one chooses finitely many points pq, ..., p,, € RU N such that the associated local
regions R,, contained in the filled Levi-Hartogs figures q)pk(ﬁ@rz) cover RUN. Then,
one extends the function on each Levi-Hartogs figure separately and patches up the
functions thus obtained into a single holomorphic function by establishing connectedness

of relevant intersections of open sets.

(ii) The geometry of the cut-out hypersurface M., r € (7._1,7x): By assumption, the
real-Hessian matrix of r); is nondegenerate at p, and the tangency of 0B"(0,7,) to
M = 0Qy; at p, forces strong convexity of M at p,. Basic Morse theory shows that
M,
Q. = QN {z:]]z]| > r} is then a piece of deformed ball diffeomorphic to R*". The

. is a deformed spherical cap diffeomorphic to R**~! for every r € (7x_1,7,). Also,

boundary in C" of Q-
aQ>T - M>7» U RT U NT‘

consists of M., together with the open subregion R, := Qy N{||z|| = r} of S?*~! which
is diffeomorphic to R*"~! and has boundary N, := M N {||z|| = r} diffeomorphic to the
unit (2n — 2)-sphere.

(iii) Choosing the neighbourhood Vs(M-,)s,: One might naively wish to consider the open
set Vs(M)s,. However, when r > 7, is very close to 7,_1, a connected component
Ws, of Vs(M)~, might appear above {r =7,_1} (as seen in the diagram below). After
filling €25, progressively, by means of Levi-Hartogs figures, because s, N Vs(M)-, is

not connected — the extension of f thus created will not, in general, agree with f ’W> .

FIGURE 3 Occurence of problematic components.3

3Mlustration taken from Merker and Porten [11], Section 4.1.
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To erase such problematic components W-,., we will consider the open set
Vs(M,)sr = Vs(M,) N{z : |[2]| > r}.

This open set is always diffeomorphic to M, x (=9, 9).

Choosing n: For the rinds appearing in Propisition 5.4, we use the smallest appearing
thickness
ch?
==
T
and, if required, further shrink 7 to ensure that n < §. It is important to note that, given
the hypotheses of Proposition 5.4, the conclusion of the proposition can be obtained for

any rind around R of thickness less than cd?/r.

Filling up Q-, using shells: To prove Proposition 5.2 for A = k — 1, fix a radius r €
(Tw—1,7x). By placing a single Levi-Hartogs figure at p,, we get unique holomorphic
extension to Q7 _,. As n < 6, 7, —n > 7,_;. If the radius 7, — n < r, then shrinking
the rind, we get a unique extension to {2.,. If not, then performing induction on an
auxiliary integer £ > 1, we suppose that, by descending from 7, to a lower radius
v’ := 7, — kn > r, holomorphic functions in Vs(Ms,)s, extend uniquely to €25,. Now,
we wish to descend further to €2s,._,. In view of Proposition 5.4, we are required to

show that, for every radius r’ with 7,_; <r <’ <7y,

e Shell’ (R U Ny) C Qup UVs(Msy)s;
([ ] Rind(RT/, T]) U <Q>r’ U V&(M>»,«)>r) D) Q>r1_n U V5<M>T’)>T; and
e Rind(R,,n) () (25 UVs(Ms,)s,) is connected.

The first claim allows us to extend the function f,.. (the unique extension to 2,» whose
existence is guaranteed by our induction hypothesis) to Rind(R,/,n). The second claim
helps us construct a potential candidate for the extension function to €2s,/_,, and the
third claim ensures that this candidate is indeed an extension. The proofs of these steps
are extremely geometric in nature and Merker and Porten often resort to pictures for the
proofs. The third claim involves decomposing the rind into three parts, each of which
is dealt with separately. Although we will not go into the details of the proof, we would
like to point out that the ideas heavily depend on our understanding of the geometry of

the hypersurface M and the cut-out domains Q,., r € (T_1,7%).

Finally, by induction, we can conclude that Jkg € N such that 7, — (kg — 1)n > r,
Th—1 < T — kon < r and that we get a unique holomorphic extension to Q7 _g.,. If
r’'—kon < r, then we shrink the thickness of the final extensional rind to obtain a unique

and holomorphic extension to {2-,, as required.
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Theorem

We now return to Hartogs-Chirka type of configurations to explore the validity of Chirka’s
extension theorem (Chapter 4, Theorem 4.1) in higher dimensions. Recall that in Chapter
4, we mentioned that Rosay’s counterexample in [14] gave a negative answer to Chirka’s
question ([5, Question 1], also see Chapter 4). In this chapter, we present Bharali’s ([2]) first

generalization of Chirka’s extension theorem to higher dimensions:

Theorem 6.1 (Bharali, [2]). Let I' be the graph of the map ¢ = (¢4, ..., n) : D — C", where
for each ¢y, k=1,...,n,

o 6)
(2,()eD?

Or € [{z = (2,2) 1 € O(D?) and sup |U(z,0)| < 1} N C(D; D)

If Q is a connected neighbourhood of S :=T"U (8D X ﬁn) such that QN D™ is connected and
if f € O), then f extends holomorphically to D",

We first consider the following lemma — a special case of Theorem 6.1 — which is not
only crucial to the proof of Theorem 6.1, but also illustrates a powerful technique often used
in analytic-continuation problems. The kind of construction seen in the proof of this lemma

will be repeated more than once in the final chapter of this report.

Lemma 6.2. Let I' be the graph of the function ¢(z) := Z over D. Let Q be a neighbourhood
of T'U (0D x D) such that Q ND? is connected. If f € O(KY), then f extends holomorphically
to a neighbourhood of D?.

Proof. Consider the smooth family of analytic discs {Ai},c ;

Ai(2) = (2,2t — 2), zeD.

Notice that A;(D) NT = {(t +iy,t —iy) : y € [-V1 — 2,v/1 — 2]}.

Consider the case when t > 0. If t <z < 1 and 2* +y? < 1, then |2t — (x +1y)| < 1. Thus,
the sets

S ={Alz+iy):t<az<l, 2 +y* <1}, t€0,1),
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are analytic discs with boundaries in , and S;” C Q for ¢ close to 1. By the Kontinuitétssatz,
f extends holomorphically to a neighbourhood of {(z =z +iy,—2) € C*: 0 < x <1, |2] <

}(=S5).

Similarly, by considering the sets

= {At(a:+iy):—1<x<t, x2+y2<1}, t e (=1,0],

we can show that f extends holomorphically to a neighbourhood of the graph of the holo-
morphic function ¢(z) = —z. Call this function f. Now we can evoke the classical Hartogs

theorem (i.e., Theorem 3.1) to conclude that fextends holomorphically to D?. O

We now proceed to prove the main theorem. Note that the class of graphs described in
Theorem 6.1 is such that the ‘I'-component’ of S may , in general, be entirely devoid of
symmetry. We will first make — just as in the proof of Theorem 5.1 — admissible changes to
the configuration S so that it suffices to prove Theorem 6.1 for ¢ belonging to some easier-to-
work-with class of graphs. Thereafter, the conjugate variable Z is treated as an independent

variable &.

Proof of Theorem 6.1. Let ¢ : z — (¢¥1(2,%),...,¢¥n(2,Z)) be a map belonging to the class
described in (6.1) above. We then choose an & > 0 such that Ann(0;1—2¢,142¢) x D" C Q.
It is easy to see that it suffices to work with the Hartogs configuration graph <¢| pol (e a)> U

((9D(O7 1—¢)xD ) But then, we have the very useful property:

2

(2,8) = (V1(2,6), ..., n(2,€)) is continuous on D(0;1 —¢) .

Therefore, it actually suffices to prove Theorem 6.1 under the assumption that for each ¢,
k=1,...n

o € {z = Y(2,2) 1 ¢ € O(D?) ﬂC(ﬁQ) and sup |¥(z, Q)| < 1}. (6.2)

(2,0)eD”

N

Moreover, we can let ¢, kK = 1,...,n, be polynomials P(z,{) = > C&k)zo‘lfa?, with
|a|=0

SUD ) c5? 2 |P(z,{)| < 1. This is beacuse 1, can now be approximated arbitrarily closely

by such polynomials on the whole of . Hence, we will now assume that ¢, k =1, ...,n are

polynomials ¢y (z) = Py(z,Z) with the property SUP(, )52 |Pe(z,¢)] < 1.

Let 6 > 0 be so small that
i) sup, o (2 01 < 1

i) {(z,wy,..,wy) € CPHo 2] < 1 Jwy — Pu(2,2)] < 6; k=1,...,n} C Q; and
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iii) Ann(0;1 =64+ 1+6) xD" C Q.
There exists an ¢ € (0,9/2) so small that for |wi| <o, k=1,...,n

o [{wr+ P(2,8)} — Pu(z,2)] <d V(z,€) € D x C such that |£ — Z| < g¢; and

o |wp+ Pu(z,8)| <1 V(z,¢) € Ann(0;1 — 6,14 6) x D(0;1+ ).
Therefore, for each w € D(0;g¢)"

(2,8) = H(z,&,w) == f(z,w1 + Pi(z,8),...,w, + Pn(z,g)) (6.3)

is well-defined and holomorphic in {(z,&) : |z| < 1,|€ —Z| < g0} U (Ann(0;1 — 6,1 + J) x
D(0;1 +6)) C C2. Hence, by Lemma 6.2, we can define a function H, such that for each
w € D(0;¢0)",

(2,€) = H(2,€, w)

is a holomorphic extension of the function given by (6.3) to a neighbourhood of D?.

Now, observe that for any (20,&) € D* and p € (|&], 1),

~ B z§w
H{(z0,6,w) = 27”2/ / e Kt

l2|=1 [§|=p

B H(z, & w)
N 27r22/ / (z —20)(€ — 50)d€dz

|2|=1 [¢]=p

forw € D(0;e0)". Thus, the analyticity of the family {H(-, . w)}|wk‘<50 forces {f[(, . w)}

to be an analytic family. We now have that

|wk|<50

(z,f‘,w) = ﬁ('z?gawl - Pl(zvf)a ey Wy — Pn(zag))

is holomorphic in {(z,&,w) : |z] < 1,[¢] < 1, |wx — Pe(2,€)| < €0}

Define
f(z, w) = ﬁ[(z, 0,w; — Pi(2,0),...,w, — P,(2,0)).

f is defined and holomorphic in {(z,w) : |z] < 1,Jwg — Py(2,0)] < eo}. Since, for
z € Ann(0;1—6,1+6), H(z,0,uy — Py(z,0), .. — P,(2,0)) = H(2,0,w; — P1(2,0), ..., w, —
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P,(z,0)), we have

f(z,wy,...;w,) = H(z,0,w; — Pi(2,0),...,w, — P,(2,0))
= H(z0,w — Pi(2,0),...,w, — P,(2,0))
= f(z,wy,...,w,) [by (6.3)]

in Rs := {(z,w) : z € Ann(0;1 — 6,1 + 9), |wr — Pe(2,0)] < e0}. So, ﬂRa = f‘Ré. This
allows us to define f as a holomorphic function on As := Ann(0;1 —4§,1+ J) x D™ by simply
setting ﬂ A = f ‘ Ay We, therefore, conclude that ]7 is holomorphic in a neighbourhood of
o U (0D x D") — o being the graph of the holomorphic map z — (Py(z,0), ..., P,(z,0)) over
D. By the classical theorem of Hartogs, fextends to ' € O(D™!) and F‘Ré = f‘Ré. Rs

being an open subset of €2, F'is the required holomorphic extension. O

Although a valid generalization of Chirka’s extension theorem, Theorem 6.1 deals with a
subclass of C(ID; D) that is quite restrictive. We observed that, by changing the scheme of
choosing analytic discs in the proof of Lemma 6.2, we could prove this theorem for a less
restrictive class. We talk about this in the next chapter. We will also see another subclass of
C(D; D) for which such a theorem has been obtained by Barrett and Bharali ([1]).
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7. Two Extension Theorems of Hartogs-Chirka

Type Involving Continuous Multifunctions

Introduction and statement of results

This chapter is motivated by a version of Hartogs’ lemma that says that if 2 is some neigh-
bourhood of the union of D x D and a complex analytic subvariety ¥ C D x D that is
finitely-sheeted over I (such that QN D? is connected), and f € O(Q), then f continues holo-
morphically to D?; and by the Hartogs-type extension theorem of Chirka (Chapter 4, Theorem

4.1). One is motivated to ask whether, given the following “Weierstrass pseudopolynomial”

k-1
Pa(z,w) == w" + Zaj(z)wj, k> 2, (7.1)

j=0

where ag, ..., ax_1 € C(D), with P, {0} C DxD, and a neighbourhood 2 of P, *{0}U (D x D),

the conclusion of the aforementioned theorems can be inferred in this new setting.

One possible approach to this question is suggested by the Kontinuitatssatz-based strategies
of Bharali [2] and Barrett-Bharali [1], provided one is willing to allow (ao, ..., ax—1) in (7.1) to
belong to some strict subclass of C(ID; C¥). To motivate the origins of the two main theorems

below, let us recall the result from [2] that we saw in the previous chapter.

Result 7.1 (Bharali, [2]). Let T be the graph of the map (¢1, ..., %) : D — C*, each ¢;(2) :=
(2, %), where, for j =1,.. k,

Y, € {1/1 € OD*) : sup [¥(2,¢)| <1 and z v+ (z,%) is continuous on ﬁ} . (7.2)
(z,()€ﬁ2

If Q s a connected neighbourhood of S = T U (0D x DF) contained in
{(z,w)eCxCF:we ﬁk} and if f € O(), then f extends holomorphically to D+,

In the theorems in [1] and [2], the authors construct a continuous family of discs
{®, € C(D;C*) : t € [0,1]} such that ®y = (¢1, ..., ¢) and each @, is holomorphic on larger
and larger sub-regions of I) so that, eventually, ®;, € O(D)NC(D). This suggests the following
strategy:
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e Step 1. Setting (¢1, ..., ¢x) := (ag, ..., ag—1), we can try to construct a continuous family
of discs {®¢}4eo1] with the properties mentioned above. We can then treat each @, :=

(®10,..., Prr—1) as a k-tuple of the ordered coefficients of a Weierstrass pseudopolyno-

mial, to obtain a continuous family of “pseudovarieties”
{Et = {(z,w) eEDxC:wr+ Z?;& P, j(2)w! = O}} o such that ¥ = {(z,w) €
tefo,1

D x C: P,(z,w) = 0}, each ¥, is a finitely-sheeted complex analytic subvariety fibered
over larger and larger sub-regions of I, and ¥; is the graph of an analytic multifunction

(i.e., a multigraph) over D.

e Step 2. In the above construction, our hypotheses on (ay,...,ar_1) must also ensure
that each ¥; over D), like the initial “pseudovariety”, lies within the bidisc, i.e., ¥; C
D x D Vt € [0,1], and that ¥, is attached to OD x D along the border of ¥, Vt € [0, 1].

e Step 3. Finally, we invoke a suitable version of the Kontinuitatssatz to achieve analytic
continuation along the family constructed above so as to reduce the problem to the
finitely-sheeted-analytic-variety version of Hartogs’ lemma mentioned in the beginning

of this section.

It turns out that this second strategy is successful (with some refinement) if the coefficients
g, ..., ax—1 are drawn from the subclasses studied in [1] and [2]. The results presented below
are contained in the article [8]. The first theorem is stated for ay, ..., a1 belonging to the
subclass of C(D) introduced by Barrett and Bharali in [1].

Theorem 7.2. Let ay, ..., ax_; € C(D; C) be such that the set
k-1
Yo = {(z,w) eDxC:w" +Zaj(z)wj = 0}
=0

lies entirely in D x D. For 0 < r < 1, let Af,(r) represent the v Fourier coefficient of
aj(re”), v € Z. Assume that A, = 0Yv < 0 and j = 0,....,k — 1. Let Q be a connected
neighbourhood of S := ¥,U (0D x D) such that QND? is connected. Then, for every f € O(R),
JF € O(D?) such that

F‘QQDQ = f|Qm]D>2'
Our next theorem has its origins in Result 7.1, but see Remarks 7.1 and 7.2 below.

Theorem 7.3. Let a; = 1;(z, %), where

Y; € {w cO?):  sup |¥(¢,sC)| < land z v+ (z,Z) is continuous on @} (7.3)

(¢,s)eDx[0,1]
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for 3 =0,....,k — 1, be such that the set

Y, = {(Z,w) eD x C:wk+iaj(z)wj :0}

J=0

lies entirely in D x D(0;2). Let Q be a connected neighbourhood of S := %, U (0D x D(0;2))
such that QN (D x D(0;2)) is connected. Then, for every f € O(Q), IF € O(D x D(0;2))
such that

F|QO(D><D(O;2)) = f|Qn(DxD(o;2))'

Remark 7.1. Let §; and §3 be the classes of functions appearing in (7.2) and (7.3) respectively.

In Chapter 6, we pointed out that the class §; is quite restrictive. While adapting the approach

outlined above, we found that we could construct the deformation {®, : ¢ € [0, 1]} in a slightly

different fashion from what is suggested in [2], which allows us to work with ay, ..., ax_1 be-

longing to a less restrictive class. Note that §o 2 &1; simply observe that if ¢ (z,w) =

(M + ¢)~lexp(z — w — 2), where M = sup . om0 | €XP(C — sC — 2)|, then M < 1 and for
€ (M,1), ¢ €, but ¢ ¢ 1.

Remark 7.2. Unbeknownst to me, Cerne and Flores [4] have independently used the three-step

method summarized earlier to prove:

(¥) Let ag,...,ax_1 be continuous functions on D and let
Yo = {(z,w) €D x C:w" 4+ ap_1(2)w ™+ +ap(z) =0}

be a continuous variety over D. Then, every function holomorphic in a connected neigh-
bourhood of the set S = ¥, U (0D x C) extends holomorphically to a neighbourhood of
D x C.

Note that C(ID;D) is a subset of the uniform closure (on D) of the function space obtained if
we drop the bound “sup(, ¢epe [(2, ()| < 17 from §;. It is this, coupled with their reliance on
the three-step method outlined above, that compels Cerne-Flores to work with the unbounded
cylinder D x C. Theorem 7.3 represents an alternative setting in which to exploit the same

method with — in contrast to Cerne-Flores [4] — the following initial objectives:

» to use the ideas of Barrett and Bharali to demonstrate an analytic-continuation theorem

stated for a compact Hartogs figure (S =, U (0D x D(0;2)) in our case); and

» to extend the applicability of Result 7.1 to a less restrictive class of graphs/coefficients,

namely §5.
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Due to considerations inherent to the three-step method we intend to use — see Remark 7.4(i)

below — we, just like Cerne-Flores, cannot work with the Hartogs configuration ¥, U (0D x D)

either. However, we can state a result involving ¥, U (9D x D(0;2)).

We refer to several lemmas from Barrett-Bharali [1] during the course of this chapter. For

the sake of convenience, we first provide the statements of the relevant lemmas from [1].

Useful lemmas from Barrett-Bharali [1]

Lemma 7.4. Let G(re®) = SN b, (r)e™ — i.e., we assume that G(re) Vr € (0,1] has no

n=0 """

negative Fourier modes. Assume further that G € C®(D;C). Then, the holomorphic function

D,(() = ibnm (Q) ¢ € D(0;r),

which belongs to O[D(0;7)] N C[D(0;7)], satisfies D,(re?) = G(re?) v0[0,27). Firv € N
and let K € D(0;1 — 1/v) be a compact subset. The function (r,() — D,({) is a continuous
function on [1 —1/v,1] x K.

Lemma 7.5. Let G be as in Lemma 7.4. Then,

o {D,},c00) s a continuous family in the sense that for a fixed o € D, r +— D,({o) s

continuous in the interval (|(ol,1).

e lim, ,;- D.(C) exists for each ( € D, and this limit defines a holomorphic function

v e O).

Lemma 7.6. Let F € C(D;C). Assume that F(re") Vr € (0,1] has no negative Fourier
modes. Then, given € > 0 there exists a function G € C*(D;C) of the form

where N is some large positive integer and B, € C*([0,1];C), such that |F({) — G({)| < ¢
V¢ € D.

Remark. In [1], Lemma 7.6 is stated with the condition supyp |F'| < 1 among the hypotheses.
This condition is not needed to obtain the conclusion above, but to derive other conclusions
that are needed in [1], but not in the present chapter. Thus, we have suppressed the condition

supgp |F'| < 1 and its associated conclusions in our version of Lemma 7.6.

Many of the mathematical details underlying Step 2 and 3 are common to Theorems 7.2 and

7.3. We now present these technicalities.
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Preliminary Lemmas

The following notation will be used:

e C=(D;C) will denote the class of infinitely differentiable functions on the unit disc, all

of whose derivatives extend to functions in C(D);

o for a = (ag,...,a4_1) € C(G;C¥), k€N, G C C a bounded domain, and £ C G
k-1 ,
Po(z,w) = wk + 3 aj(z)w,
7=0
k-1 ‘
Yor =14 (z,w) € EXC:wh+ Y aj(z)w! =04,
7=0

and, for the sake of convenience, the subscript E shall be dropped when E = D, i.e.,
Za@ =. Za.

The first step of the three-step strategy outlined in the first section is not difficult, but the
details involved are theorem-specific. This is, in part, due to the requirements described in
Step 2. The task of determining sufficient, yet not too strong, conditions on the coefficient
k-tuple (ao, ..., ax_1) that will enable us to establish that each 3, ¢ € [0,1], is contained in
the bidisc relevant to each theorem is a crucial one. The following lemma — a maximum

principle for varieties — will prove useful.

Lemma 7.7. Let G C C be a bounded domain and a € O(G;C*) N C(G;CF). Define
M (z) := max {|w| : (z,w) € 8,5} .
If M(z) < K ¥z € 0G, then M(z) < K ¥z € G.

Proof. We would be done if we could obtain the conclusion of this lemma when ¥, is an
irreducible subvariety. For Y, ¢ irreducible, if we can show that M is subharmonic, then the

result would follow from the maximum principle.

Recall that the zeros of monic degree-k polynomials over C, viewed as wunordered
k-tuples of zeros repeated according to multiplicity, vary continuously with the coefficients.

Hence, as M is symmetric in the zeros of P,, M € C(G).

Now, let
MR(z) := resultant of P,(z,+) and 0,,P,.(2,), z € G.

By the irreducibility of ¥, 5, R # 0. As R € O(G), & := R {0} is a discrete set in G.
Now, for any zp € G'\ &, 3, 20y = {(20,wo0,1), -, (20, wo )} with wg; # wo, for j # 1. As
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OwPa(20, wo j) # 0 for each j = 1,...,k, we may apply the implicit function theorem at each
point of ¥, (-} to obtain a common radius r(20) > 0 such that the k sheets of 2 a,D(z0:r(z0)) Ar€
the graphs of functions ¢7°, ..., ¢i° € O(D (z0;7(2)) ). Clearly,

M(z) = r?galgi ‘gbjo(z)‘ Vz € D(zo;r(zo)).
Thus, M’D(zw(zo»

infer that M ‘ ae is a subharmonic function.

is subharmonic. As zy was arbitrarily chosen from the open set G \ &, we

As G is the zero set of a holomorphic function, it is a polar set. But M ’ ae is a bounded

subharmonic function, and M € C(G). Therefore, M must be subharmonic in G. O

Remark 7.3. The following is a paraphrasing of the above lemma that will be used in our

situation.

Let G C C be a bounded domain and a € O(G;C*) N C(G;C*). Then,
Saoc C 0G x D(0;K) = X,5 C G x D(0; K).
Remark 7.4. We will also need the following algebraic facts:

(i) Ifag,...,ap_1 €D, k € N, and wy, ..., wy, are the zeros of the polynomial w* +ay,_jw*=!+
o 4 aqw' + ag, then w; € D(0;2), j =1,..., k. For an easy proof of this fact, one can
apply Rouché’s theorem to f(w) := w* and g(w) := wk + Z;:é ajw! on D(0;2).

(ii) If (ap,...,ax_1) € CF, and wy, ..., w, are the zeros of the polynomial w* + aj_w*~! +

<o+ 4+ aqw + ap, then, for n € C, wy 4+ 1, ..., wx + n are the zeros of the polynomial

wh + a,@lwk_l +- 4 a@w + 04(()77),

where, for each 7,
k
N .
04§-77) =, + Z (—1) (l ) '™ (7.4)
1=j+1 —J

interepreting oy := 1.

Theorems having a similar flavour as Theorems 7.2 and 7.3 have relied upon the Konti-
nuitdtssatz. However, the earliest (and partially correct) works do not specify which form of
the “Kontinuitatssatz” they rely upon. We wish, here, to make clear that the version that
works for us is the version of Chirka and Stout [7]. However, merely using the Chirka-Stout
Kontinuitatssatz will yield a conclusion weaker than desired, on the envelope of holomorphy

of the domain in question. The next lemma follows the approach of Barrett and Bharali [1] to
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argue that it is, in fact, possible to obtain the strong conclusion of Chirka’s extension theorem
(i.e. Theorem 4.1) in our situation.

Lemma 7.8. Let a = (ag,...,ap_1) € C(D;C*) and ¥, € D x D(0;7), r > 0. Let Q be
a connected open neighbourhood of S := £, U (0D x W) and f € OQ). Let V :=
Ann(0;1 —e,14¢€), € > 0, be such that V x D(0;r) C Q, and let D € Q, be an open subset
containing S. For any o € C(D; C*) and anyn € C, let o™ € C(D; CF) denote the perturbation
that is given by (7.4) so that X, m = Yo + (0,7). Suppose there exists a continuous function
A= (Ag, ..., A1) : D x [0,1], and a 6 > 0 which is so small that, defining ¥} = YA (1)

we have
(i) for each n € D(0;9), X7 € D x D(0;r) ¥t € [0,1]; and

(ii) for each n € D(0;6), 7 N (D x D(0;7)) \ D is a complex-analytic subvariety of D x
D(0;7)\ D.

Then, there exists a connected neighbourhood Qi of S; = X U (8D x D(0;7)) and
fi1 € O(82y) such that

fil

Q1r“(‘/xD(0;r)) f‘fhﬂ(VXD(D;r)) '

Proof. Let
T = U 39+ (0, 7).

neD(0;6)

By the Chirka-Stout Kontinuititssatz [7], 7 C m($), where (Q,7) denotes the envelope of
holomorphy of €.

There is a canonical holomorphic imbedding of 2 into Q. We denote this imbedding by
j Q< Q. Corresponding to each f € O(R), there is a holomorphic function £(f) € O(Q)
such that £(f)oj = f. By [7] (and analogous to the situation in [1]), there exists a holomorphic
mapping (note that ] varies analytically in n) H : T — Q such that

moH(X] N ({2} xCy)) =X N({z} xC,) Vne D(0;6) and z € D.

Now, for each p := (z1,w;) € TN (V x D(0;7)), there exist
» an 1y € D(0;0); and

» a point ¢ € X N{z1} x Cy,
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such that the continuous family {3}, determines a path 7y, : [0,1] — {21} x C,, with
Y (0) = ¢ and 7,,(1) = p. Let Sgq := the sheaf of O(2)-germs over C? (refer to [13, Chapter
6] for the definition of an O(2)-germ) and let

Yqp := the lift of v,, to Sq starting at the germ [g : g € O(Q)],.

Examining the Kontinuitatssatz, H(p) = 74, (1).

We know that if [s, : g € O(Q)], is an O(Q2)-germ in (2, then

E(f) ([sg:9 € OQ)]:) = s¢(2).

By the monodromy theorem, 7,,(1) = [¢g : g € O(Q)],. Hence,

E(f) o H(p) = E(f) (1)) = f(p).
Since the above holds for any arbitrary p € T N (V x D(0; 7“)), we see that

E(f)oH=fonTnN (V X D(O;r)).

Finally, let 3 := 7T U (V x D(0;r)) and

fiew) = JENV O HEW), i W) eT,
; f(z,w), if (z,w) € V x D(0;7),

Then, f;, € O(Ql) and

fil

Q1“(‘/XD(0;T‘)) f}fhﬂ(VxD(O;r)) '

Proof of Theorem 7.2

By Lemma 7.6 and the continuous dependence of the zeros of a polynomial on its coefficients,
we know that it is enough to prove Theorem 7.2 for ag, ..., ax_1 € &, where &; & C(D;C) is
the following set:

N
{g €C®(D;C): 3N €N, G, € C*([0,1];C) such that g(re"”) = ZGn(r)eme, r e (0, 1]} :

n=0

Thus, we replace a = (ag, ..., ar_1) in Theorem 7.2 by b := (by, ..., by_1) € &¥. This is because
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we can find a ¥, that is so close to X, that ¥, € Q and is attached to 0D x D.

Fix a j € {0,....,k — 1}. Let

b(re) = Z B.(r)e™, 6 € [0,2r),
n=0
where n(j) € N and B), € C>([0,1];C). Using Lemma 7.4 in [1], where Barrett and Bharali
constructed an explicit family of analytic discs in Dx C with boundaries in {(z, by(2), ..., by_1(2))

z € D}, we define a family of continuous discs {B; = (B, .-, Brr-1)},¢p ) as follows:

> Bu(t) (5)", if ¢ € D(;1),
B, () =4 (7.5)
b;(Q), if ¢ € Ann(0;1,1).

Note that B, = b. Also, by Lemma 7.5 in [1], {%t}te[o,l] is a continuous family, and B; €
O(D; Ck) N C(D; Ck).

Let 6 > 0 be so small that n € D(0;0) = %, + (0,7) € QN (D x D). Let b =
<b§"), o ng) be defined pointwise by (7.4) in the previous section. By Remark 7.4(ii), each
bén), being a linear combination of b;, ..., by_1, is in &;. Thus, we can define continuous discs

gB(W) — (%(W)’ . ;B(W) >}
{ t t,0 tk—1 te[0,1]

in equation (7.5). It is a simple observation that the same discs can be obtained by defining,

on D,

using the Fourier coefficients of bgn) (re), r € (0,1], just as

k—1
v 4 ok .
B =B+ (1) (z - j) By + (—1)F (k )nk‘J- (7.6)

I=j+1 —J
It is important to note that B{” = B, vt € [0, 1].

Fix a domain D € 2, such that S C D. We claim that the continuous family{%gn)} o
t€fo,1

satisfies the following properties:
a) B = b0 vy e D(0;6);
b) for a fixed ¢, iBg") depends analytically on 7;
c) for each B, 2%5,7) \ D is an analytic subvariety of D x C\ D; and

d) for each ¢, ¥ C D x D Vn € D(0;6).

47



Chapter 7: Extendithafltleedfehs tehMirafgeeChatistehkbart dgseOtamnks OF shhartogs-Chirka Type

Properties a) and b) follow from construction. For c), it is enough to observe that

Z%gm = <Zb(n)7m> U (2%§”),D(0;t)) ’

and that B € O(D(0;t); C*). For property d), it is enough to show that

) }D(O;t)

L0 pogy C D X D.

B,",D(

But this follows from Lemma 7.7 applied to X with D(0;t) acting as GG, since

B D(0;t)

E‘Bg"),aD(O;t) = EbW),BD(O;t) C 8D(O,t) x D.

From this, we can conclude that the mapping A : D x [0,1] — CF with A(z,t) := By(2)
satisfies the hypotheses of Lemma 7.8. Thus, there exists a connected open neighbourhood
Qy of Sy == U (81D> X ]D>) and a f; € O(£2y) such that

1

fl‘ _f}Qlﬂ(Vx]D))’

Qlﬂ<V><]D))

where V' := Ann(0;1 —¢,1 +¢), € > 0, such that V x D C .

But, %50) is holomorphic by construction. Hence, from the analytic-multigraph version of
Hartogs’ lemma, 3F € O(D?) such that

F}er‘IDQ = fl’fllﬁDQ'
Thus, F' and f must coincide in €2y N (V X ]D)) ND2. As the latter is an open subset of the

connected set 2 N D2 we conclude that

F‘QQ]DJQ = f|Qm]D>2'

Proof of Theorem 7.3

The proof of this theorem is similar to that of Theorem 7.2. The main difference lies in the spe-
cific method of constructing, starting from the given multigraph, a continuous family of multi-
graphs along which we can achieve analytic continuation by invoking the Kontinuitatssatz.
Recall that, in the previous section, the form of each coefficient function a; facilitated the
construction of functions that were holomorphic on increasing concentric discs in . In the

present case, to perturb the coefficients, we will construct analytic annuli attached to the
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graphs of a; along their inner boundaries, and to D x D along their outer boundaries. In
view of Remark 7.4(i), we are compelled to work with a polydisc longer than D?.

Proof of Theorem 7.2. Let a(z) = ¥(2,%) == (¥0o(2,%), ..., Yr_1(2,2)). Set R := D x [0,1].
Note that, by hypothesis, we can find an € > 0 such that Ann(0;1 —2¢,1+2¢) x D(0;2) C Q.

Hence, just as in the proof of Theorem 6.1 in Chapter 6, it suffices to work with I -]

and the Hartogs configuration S. := %, 557U (0D(0;1—¢) x D(0;2)). This affords us the

very useful property:
(¢, 8) + 1;(¢, sC) is continuous on D(0;1 —¢) x [0,1], Vj =0,....,k — 1.

Therefore, it actually suffices to prove Theorem 7.3 under the assumption that )y, ..., ¢¥r_1 €

B,, where

By = {w € O(D? ﬂC(ﬁQ) sup (¢, s0)| < 1} :

(¢,8)ER

In order to avoid messy subscripted notation such as X, Doi—e) and messy normalizations, we
shall hereafter assume that ¢; € &,, for j =0, ...,k — 1.

We define a family of continuous discs {W¥; = (¥, , ..., \I]tak_l)}te[o,l) as follows:

a(Q) = ¥(¢,C), if ¢ € D(0;1-1),
U (¢) == (7.7)
(G (é, “}”2) . if ¢ € Ann(0;1 —¢,1).

Therefore, Wy = a. We observe that {W:},. ) is a continuous family in the sense that for a

fixed (o € D, t + W((p) is continuous in the interval [0,1). Furthermore, we may define

U1(¢) == lim ¥,(¢) = (¢, 0), (7.8)

t—1—

Thus, ¥; € O(D;C*). Also, note that, for each t € [0, 1],

sup |\Ijt,](g)| = sup |¢](C7 (1 - t)22)| < 17 J - 07 ) k—1. (79)
) ¢cedD

Let 6 > 0 be so small that

» 1€ D(0;0) =S, + (0,7) C 2N (D x D); and
» for allp € D(0;9) and 7 =0,....k — 1,

k—1

- l - , k :
s [0l + 3 (1) s Ol + (5 Jm <1 o

(¢,5)ER 1=j+1
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Let ¢ = (W), ...,z/;,@l) € O(D? C*) be defined pointwise on D by (7.4). By (7.10),

sup ¢§”>(Q,SZ)‘ <1Vye D0;8) and j =0, ...k — 1.

(¢,s)ER

Thus, each 1/1](-77) € 6,.

Now, just as in the proof of Theorem 7.2, we use {\Ijt}te[() ) to construct continuous families

of continuous discs {\If,gn) = <\IJ%), - \Ilgnk)_1>} g’ " D, as follows:
’ ’ telo,1
k-1 ] 1
(n) ._ I—j I—j k—j k—j
‘Ijt,j = \Ijtyj‘F Z (—1) y(l—j)lpt’ln J +(—1) j(k‘—j)n 7, (711)
l=j+1
Note that ‘Q[fgo) = WU,, and by construction

sup | (¢)| = sup
) ¢edD

(- 1%0)| <1 (7.12)

As before, fixing a domain D & €2 such that S C D, we claim that the following properties

are satisfied:
a*) U = o™ vy € D(0;06);
b*) for a fixed ¢, \I/g’), depends analytically on n;
c*) for each \Ilgn), X () \ D is an analytic subvariety of D x C\ D; and
d*) for each t, Z\l/ﬁ”) c D x D(0;2) ¥n € D(0;96).

Properties a*) and b*) pose no problem, and ¢*) can be argued in exactly the same way as in
the previous section. For d*), we write, in the notation established in the beginning of this
chapter:

5 (7.13)

v 9Ann(0;1—t,1) E\IJE”),aD(O;lft) U Eq}i’”,a}m'

Note that pri’”,ap(o;kt) C 0D(0;1 —t) x D(0;2), while due to inequality (7.12) and Remark
7.4(i), we have that Z\pﬁ’”,am
paraphrasing in Remark 7.3) to X

C 0D x D(0;2). Thus, applying Lemma 7.7 (specifically, its

¥ Ann(01-t1)7 We have that d*) holds.
From this, we conclude that the mapping A : D x [0,1] — C* defined as A(z,t) := ¥,(z)

satisfies the hypotheses of Lemma 7.8. Thus, there exists a connected open neighbourhood
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Qof S =% U (O]DD X D(0;2)) and a f; € O(£2) such that

©
\I,l

f1| - f}ﬂlm(VxD(O;Q))’

2un(VxD(0:2))

where V := Ann(0;1 —¢,1+¢), € > 0, such that V' x D(0;2) C Q. \Ifgo) being holomorphic by
construction, we can repeat the argument presented in the proof of Theorem 7.2 to conclude
that 3F € O(D?) such that

F’Qmﬂ)? = f|QnD2'

o1
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