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Abstract

It is well known that there exist domains Ω in Cn, n ≥ 2, such that all holomorphic functions in

Ω continue analytically beyond the boundary. We wish to study this remarkable phenomenon.

The first chapter seeks to motivate this theme by offering some well-known extension results

on domains in Cn having many symmetries. One important result, in this regard, is Hartogs’

theorem on the extension of functions holomorphic in a certain neighbourhood of (D×{0})∪
(∂D×D), D being the open unit disc in C. To understand the nature of analytic continuation

in greater detail, in Chapter 2, we make rigorous the notions of ‘extensions’ and ‘envelopes

of holomorphy’ of a domain. For this, we use methods similar to those used in univariate

complex analysis to construct the natural domains of definitions of functions like the logarithm.

Further, to comprehend the geometry of these abstractly-defined extensions, we again try to

deal with some explicit domains in Cn; but this time we allow our domains to have fewer

symmetries. The subject of Chapter 3 is a folk result generalizing Hartogs’ theorem to the

extension of functions holomorphic in a neighbourhood of S ∪ (∂D × D), where S is the

graph of a D-valued function Φ, continuous in D and holomorphic in D. This problem can be

posed in higher dimensions and we give its proof in this generality. In Chapter 4, we study

Chirka and Rosay’s proof of Chirka’s generalization (in C2) of the above-mentioned result.

Here, Φ is merely a continuous function from D to itself. Chapter 5 — a departure from

our theme of Hartogs-Chirka type of configurations — is a summary of the key ideas behind

a ‘non-standard’ proof of the so-called Hartogs phenomenon (i.e., holomorphic functions in

any connected neighbourhood of the boundary of a domain Ω b Cn, n ≥ 2, extend to the

whole of Ω). This proof, given by Merker and Porten, uses tools from Morse theory to

tame the boundary geometry of Ω, hence making it possible to use analytic discs to achieve

analytic continuation locally. We return to Chirka’s extension theorem, but this time in

higher dimensions, in Chapter 6. We see one possible generalization (by Bharali) of this

result involving Φ ∈ A, where A is a subclass of C(D;Dn), n ≥ 2. Finally, in Chapter

7, we consider Hartogs-Chirka type configurations involving graphs of multifunctions given

by “Weierstrass pseudopolynomials”. We will consider pseudopolynomials with coefficients

belonging to two different subclasses of C(D;C), and show that functions holomorphic around

these new configurations extend holomorphically to D2.
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1. Introduction and Basic Theorems

In the function theory of several complex variables, a function f : Ω→ C, Ω a domain in Cn,
is holomorphic if for every point a ∈ Ω, there is a polydisc 4(a) centred at a such that

4(a) ⊂ Ω and f can be written as an absolutely convergent power series

f(z) =
∑
α∈Nn

aα(z − a)α, z ∈ 4(a),

where the right-hand side converges uniformly on compact subsets of 4(a). The set of func-

tions holomorphic on Ω shall be denoted by O(Ω). The two most well-known phenomena in

the study of such functions are those of analytic continuation and the inequivalence of the

ball and the polydisc. This is a report on an effort to study the continuation phenomenon

systematically. It is easy to see that if Ω is a domain in C and a ∈ C \ Ω, there exists a

holomorphic function f in Ω which cannot be continued analytically to the point a. This is

not true in Cn, n > 1. We begin with some well-known results to elucidate this.

Theorem 1.1 (Hartogs). Let Ω := D(0; 1+ε)×D(0; ε)n−1∪Ann(0; 1−ε, 1+ε)×D(0; 1)n−1,

n ≥ 2, for some small ε > 0. If f ∈ O(Ω), then f extends holomorphically to Dn, i.e.,

∃F ∈ O(Dn) such that F
∣∣
Ω∩Dn ≡ f

∣∣
Ω∩Dn.

This theorem is a special case of a more general, yet basic, phenomenon that we now

explore. For this, we need a definition.

Definition 1.2. A domian Ω ⊆ Cn is called a Reinhardt domain if whenever (z1, ..., zn) ∈
Ω and (θ1, ..., θn) ∈ Rn, we have (eiθ1z1, ..., e

iθnzn) ∈ Ω.

Theorem 1.3. Let Ω be a Reinhardt domain in Cn and f ∈ O(Ω). Then, f admits a Laurent

series expansion

f(z) =
∑
α∈Zn

aαz
α

such that the series on the right-hand side converges absolutely ∀z ∈ Ω and uniformly to f on

compact subsets of Ω. Moreover, the aα’s are uniquely determined by f .

Proof. We begin by proving the uniqueness. Let w ∈ Ω be a point with coordinates (w1, ..., wn),

wj 6= 0 ∀j ≤ n. Let Tn(w) := {(w1e
iθ1 , ..., wne

iθn) : (θ1, ..., θn) ∈ Rn}. Then, since the series

converges uniformy to f on compact subsets of Ω and Tn(w) is compact in Ω, we can multiply

1



Chapter 1 : Introduction and Basic Theorems

by e−i(α1θ1+···+αnθn) and integrate term by term to obtain:

aα =
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

f(w1e
iθ1 , ..., wne

iθn)e−i(α1θ1+···+αnθn)

wα
dθn...dθ1. (1.1)

As clarification: we shall use multi-index notation throughout this chapter. In this notation,

for any α ∈ Zn and w ∈ Cn, we write wα := wα1
1 . . . wαnn . The above expression holds for any

Laurent series expansion having the desired convergence. Note that it does not depend on w.

Hence, aα’s are uniquely determined by f .

To prove the existence of an expansion as above, we first note that if

A := {z ∈ Cn|rj < |zj| < Rj, 0 ≤ rj < Rj, j = 1, ..., n}

and f is holomorphic on A, then, by iteration of the Laurent expansion for functions of one

complex variable defined on annuli, it follows that f has an expansion in a Laurent series. Let

w ∈ Ω. Let ε > 0 be so small that Ω, being Reinhardt, contains the set

A(w; ε) := {z ∈ Cn : |wj| − ε < |zj| < |wj|+ ε} .

Since this is a set of the form A above, there exists a Laurent series expansion∑
α∈Zn

aα(w)zα = f(z) , z ∈ A(w; ε),

which converges uniformly to f on compact subsets of A(w; ε). Now, if w̃ ∈ A(w; ε) and∑
aα(w̃)zα is the expansion corresponding to w̃ in a set A(w̃; ε) ⊆ Ω, then the uniqueness

assertion above shows that aα(w) = aα(w̃).

Hence, the function w 7→ aα(w) is locally constant on Ω for any α ∈ Zn. Since Ω is

connected, aα(w) = aα is independent of w. This establishes the existence of a Laurent series

expansion ∑
α∈Zn

aαz
α = f(z)

that converges absolutely at each z ∈ Ω. Now, let K be a compact set in Ω. Then, there exist

w1, ..., wm and ε1, ..., εm such that K ⊆
m⋃
s=1

A(ws; εs). Since the series converges uniformly on

compacts in each A(ws; εs), we obtain uniform convergence in K.

The above theorem (Theorem 1.3) is often useful in proving results regarding analytic

continuation of holomorphic functions beyond a given domain. Here is one such result.

Corollary 1.4. Let Ω be a Reinhardt domain such that for each j, 1 ≤ j ≤ n, there is

a point z ∈ Ω whose j-th coordinate is 0. If f ∈ O(Ω), then ∃F ∈ O(Ω̃), where Ω̃ =

2



Chapter 1 : Introduction and Basic Theorems

{(ρ1z1, ..., ρnzn)
∣∣ 0 ≤ ρj ≤ 1, (z1, ..., zn) ∈ Ω}, such that F

∣∣
Ω
≡ f.

Proof. Let f ∈ O(Ω). Then, by Theorem 1.3, there exists a Laurent series expansion

f(z) =
∑
α∈Zn

aαz
α

such that the series on the right-hand side converges absolutely ∀z ∈ Ω and uniformly to f

on compact subsets of Ω. Let η : N→ Zn be an enumeration. Then,

γ∑
j=0

aη(j)z
η(j) −→ f(z) absolutely ∀z ∈ Ω. (1.2)

Now, suppose there exists an α0 = (α1
0, ..., α

n
0 ) and a k ≤ n such that

• αk0 < 0; and

• aα0 6= 0.

By the hypothesis imposed on Ω, there exists a z0 ∈ Ω such that zk = 0 and zj 6= 0, when j 6=
k. If p ∈ N is such that η(p) = α0, then

γ∑
j=0

|αη(j)z
η(j)| =∞ ∀γ ≥ p.

This contradicts equation (1.2). Hence, aα0 = 0. This implies that there is, in fact, a power

series expansion of f in Ω as follows:

f(z) =
∑
α∈Nn

aαz
α. (1.3)

Finally, define F : Ω̃→ C as

F (z) :=
∑
α∈Nn

aαz
α, (1.4)

where the absolute convergence of the series on the right-hand side, for each z ∈ Ω̃, follows

from the defintion of Ω̃. Uniform convergence on compact sets of the type D := D(z1; ε)×· · ·×
D(zn; ε), D contained in Ω̃, is now established by dominating

∣∣ ∑
α∈Nn

aαz
α
∣∣ by

∑
α∈Nn

|aα|εα1+···+αn

for z in D. Since any compact subset of Ω̃ can be covered by a finite number of such sets

lying within Ω, the convergence of the right-hand side of equation (1.4) is uniform on compact

subsets of Ω̃. Thus F ∈ O(Ω̃) and, by equation (1.3), F
∣∣
Ω
≡ f .

Observe that Theorem 1.1 is, as hinted earlier, a general case of Corollary 1.4 as the Ω

defined there is a Reinhardt domain containing the origin.
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Chapter 1 : Introduction and Basic Theorems

We will revisit the method of proof adopted above in Chapter 3. The following result is

proved using somewhat different techniques.

Theorem 1.5 (Hartogs, [9]). Let Ω be a domain in Cn, n ≥ 2. Let K be a compact subset of

Ω such that Ω \K is connected. For each f ∈ O(Ω \K), ∃f̃ ∈ O(Ω) such that f̃
∣∣
Ω\K ≡ f .

The key to this theorem lies in the following proposition:

Proposition 1.6. Let f =
n∑
j=1

fjdz̄j be a (0, 1) form on Cn, n ≥ 2, with Ckc -smooth coefficients,

that is ∂̄-closed. Then the equation

∂̄u = f (1.5)

has a Ck-smooth solution u such that u is compactly supported; indeed, u ≡ 0 on the unbounded

component of (supp(f))C.

Equation (1.5) is a special case of a class of partial differential equations which play an

important role in analysing the continuation phenomenon. Finding conditions under which

such equations, i.e., ∂̄u = f , where f can be subjected to various hypotheses, admit a solution

is called the ∂̄-problem. Often, the question of extending holomorphic functions beyond a given

domain can be reduced to establishing the solvability of a specific ∂̄-equation. The proof of

Theorem 1.5 given below is one such instance. We will see another example in Chapter 4.

Proof of Theorem 1.5. Let f ∈ O(Ω \K). We can find a set U ∈ Ω such that U is open and

K ⊂ U b Ω. Let V be an open set in U such that K ⊂ V b U. Now, let χ ∈ C∞c (Cn) be such

that

χ(z) =

1, if z ∈ V ,

0, if z ∈ UC.

Define F : Ω→ C as

F (z) =

(1− χ)(z)f(z), if z ∈ Ω \ V ,

0, if z ∈ V .

As ∂V ⊂ Ω \K, F ∈ C∞(Ω). Also, F |Ω\U ≡ f .

Now, if we could obtain a correction term, say u, on Ω such that f̃ := F −u is holomoprhic

on Ω and satisfies f̃
∣∣∣
N
≡ F

∣∣
N

, where N is some open subset of Ω\U , then, since Ω\K ⊃ Ω\U

is connected and F |Ω\U ≡ f , f̃ , by the Identity Theorem, would be the required extension.

For this purpose, let

φj(z) :=
∂F

∂z̄j
(z) =


−f(z)

∂χ

∂z̄j
(z), if z ∈ Ω \ V ,

0, if z ∈ V

4



Chapter 1 : Introduction and Basic Theorems

and consider the ∂̄-problem
∂u

∂z̄j
= φ̃j,

where

φ̃j(z) =

φj(z), if z ∈ Ω,

0, if z ∈ Cn \ Ω,

∀j = 1, ..., n. As F ∈ C∞(Ω) and φj|Ω\U ≡ 0, φ̃j ∈ C∞c (Cn) ∀j = 1, ...n and
∂φ̃k
∂z̄j

=
∂φ̃j
∂z̄k

∀j, k ≤ n. Hence, by Proposition 1.6, there exists a ũ ∈ C∞(Cn) such that

∂ũ

∂z̄j
= φ̃j.

Let u := ũ
∣∣
Ω
. If f̃ := F − u, then f̃ ∈ O(Ω). Also, since supp(φ̃j) ⊆ U, j ≤ n, ũ vanishes on

the unbounded component of U
C
. But there exists an open set N in the unbounded component

of U
C

such that N ⊂ Ω \ U . Hence, u
∣∣
N
≡ 0 and we have, f̃

∣∣∣
N
≡ F

∣∣
N
≡ f

∣∣
N

. As observed

earlier, the connectedness of Ω \K implies that f̃ is the required extension.

We conclude this chapter with a folk result. This result is often quoted, but we were unable

to find a proof in the literature. In the course of finding a proof, we were able to prove a

somewhat more general result. This will be discussed in Chapter 3.

Theorem 1.7. Let Φ ∈ O(D) ∩ C(D) be such that Φ(∂D) ⊆ D. Let Ω be a connected neigh-

bourhood of S := graph (Φ) ∪ (∂D)× D such that Ω ∩ D2 is connected. If f ∈ O(Ω), then

f extends holomorphically to D2.

Observe that if we let Φ be the constant function 0, then we obtain Theorem 1.1 as a

particular case of the above theorem.

5





2. Envelopes of Holomorphy

Given the results of the previous chapter, one is now inspired to ask whether, given a domain

Ω ⊂ Cn, a maximal domain can, in some meaningful manner, be produced such that all

functions f ∈ O(Ω) simultaneously extend to it. Such a domain, if it exists, is called an

envelope of holomorphy of Ω. In view of what we know about the maximal domain of existence

of the logarithm in univariate complex analysis, an envelope of holomorphy is not, in general,

expected to be a domain in Cn. This motivates the following definition.

Definition 2.1. A Riemann domain over Cn is a pair (Ω, p), where Ω is a topological space,

and p : Ω→ Cn is a local homeomorphism.

In this case, a continuous function f : Ω → C is called holomorphic (relative to p) if, for

every a ∈ Ω, there is a neighbourhood U 3 a such that

• p
∣∣
U

is a homeomorphism onto p(U) ⊂ Cn; and

• the function f ◦ (p
∣∣
U

)−1 is holomorphic on p(U).

If (Ω′, p′) is a Riemann domain over Cm, a continuous map u : Ω→ Ω′ is called holomorphic

if, for any open set V ′ ⊂ Ω′ and f ′ holomorphic on V ′, the function f ′ ◦ u is holomorphic

on u−1(V ′). If, in addition, u is a homeomorphism of Ω onto Ω′ and the inverse is also

holomorphic, then we say that u is an isomorphism. As before, the set of holomorphic functions

on Ω is denoted by O(Ω). We will often use the fact that the Identity Theorem holds for

Riemann domains over Cn as well.

Now, if f ∈ O(Ω), what does it mean to say that f can be continued analytically to another

Riemann domain over Cn? This will be clear after our next definition.

Definition 2.2. Let (Ω, p0) be a connected Riemann domain over Cn and S ⊂ O(Ω). We

say that {(X, p);φ : Ω→ X}, where (X, p) is a connected Riemann domain over Cn and

φ : Ω→ X is a continuous map such that p ◦ φ = p0, is an S-extension of (Ω, p0) if, to every

f ∈ S, there is an Ff ∈ O(X) such that Ff ◦ φ = f .

Remark. Ff is uniquely determined for each f ∈ S. (First on φ(Ω), since Ff ◦ φ = f , hence

on X by the Identity Theorem). It is called the extension of f to X.

The notion of an S-extension of holomorphy being the maximal domain of analytic contin-

uation of each f ∈ S is captured by the following definition.

7



Chapter 2 : Envelopes of Holomorphy

Definition 2.3. Let (Ω, p0) be a connected Riemann domain over Cn and S ⊂ O(Ω). An

S-envelope of holomorphy of (Ω, p0) is an S-extension {(X, p);φ : Ω→ X}, such that the

following holds:

(∗) For any S-extension {(X ′, p′);φ′ : Ω→ X ′} of (Ω, p0), there is a holomorphic map u :

X ′ → X such that p′ = p ◦ u, φ = u ◦ φ′ and F ′f = Ff ◦ u for all f ∈ S, where Ff and F ′f

are the extensions of f ∈ S to X and X ′ respectively. An envelope of holomorphy of (Ω, p0)

is simply an S-envelope of holomorphy with S = O(Ω).

Remarks. (i) Note that u in (∗) is unique since it is determined on φ′(Ω) by the equation

u ◦ φ′ = φ.

(ii) The S-envelope of holomorphy of (Ω, p0), if it exists, is unique up to isomorphism. In fact,

let {(X, p);φ : Ω→ X} and {(X ′, p′);φ′ : Ω→ X ′} be two S-envelopes of holomprhy of

(Ω, p0). Then, by (∗) of Definition 2.3, there are holomorphic maps u : X ′ → X and v :

X → X ′ such that p = p′ ◦ v, p′ = p ◦ u, φ = u ◦ φ′ and φ′ = v ◦ φ, i.e. the following

two diagrams commute:

X ′
u //

p′

��

X

p}}
v
��

Cn X ′
p′
oo

Ω
φ //

φ
��

φ′

  

X

v
��

X X ′u
oo

Then, u ◦ v ◦ φ = u ◦ φ′ = φ, so that u ◦ v is the identity on φ(Ω). Similarly, v ◦ u ≡
identity on φ′(Ω). Hence by the Identity Theorem, u is an isomorphism of X ′ onto X.

Having made rigorous the concept of the envelope of holomorphy of a Riemann domain, we

now proceed to examine whether there exist any Riemann domains for which such maximal ex-

tensions exist. The following theorem establishes the existence of the envelope of holomorphy

for every Riemann domain over Cn by an explicit construction.

Theorem 2.4 (Cartan-Thullen, [3]). Let (Ω, p0) be a connected Riemann domain over Cn

and S ⊂ O(Ω). The S-envelope of holomorphy of (Ω, p0) exists.

For the purpose of proving the above, we first introduce the sheaf of S-germs of holomorphic

functions on Cn. Let S be a set and a ∈ Cn. Set

Sa := {(U, {fs}s∈S)|U is an open set containing a and each fs is holomorphic on U .}

We say that two elements of Sa, say (U, {fs}s∈S) and (V, {gs}s∈S), are equivalent if there exists

a neighbourhood W of a, W ⊂ U ∩ V , such that, for all s ∈ S, fs
∣∣
W
≡ gs

∣∣
W

. An equivalence

class with respect to this relation is called an S-germ of holomorphic functions at a. The set

of such S-germs is denoted by OaS. The set OS :=
⋃
a∈Cn
OaS is called the sheaf of S-germs of

holomorphic functions on Cn. There is a natural projection p = pS : OS → Cn defined by

p(f) = a when f ∈ OaS.

8



Chapter 2 : Envelopes of Holomorphy

Now, a topology on OS is defined as follows: Let fa ∈ OaS and (U, {fs}s∈S) be a repre-

sentative of fa. Let fb be the S-germ defined by {fs}s∈S at b ∈ U , and let N(U, {fs}s∈S) :=

{fb|b ∈ U}. The collection of sets

N
fa

:=
{
N(U, {fs}s∈S) : (U, {fs}s∈S) is a representative of fa

}
,

forms a fundamental system of neighbourhoods of fa. It turns out that (OS, pS) is a Riemann

domain over Cn.

Proof of Theorem 2.4. For any (Ω, p0) and S ⊂ O(Ω), we define a map φ = φ(po, S) from

Ω into OS as follows. Let a ∈ Ω and a0 = p0(a) ∈ Cn. Let U be an open neighbourhood of

a such that p0

∣∣
U

is an isomorphism onto an open set U0 ⊂ Cn. Let ga be the S-germ at a0

defined by the pair (U0, {fs}s∈S), where fs = s ◦ (p0

∣∣
U

)−1, s ∈ S. We set φ(a) = ga. That φ

is continuous and p ◦ φ = p0,where p : OS → Cn is the natural projection, is easily verified

by examining the definition of φ and the topology imposed on OS. Furthermore, p and φ are

local homeomorphisms. In view of the relation p ◦ φ = p0, φ is in fact a local isomorphism.

Since Ω is connected, so is φ(Ω). Let X be the connected component of OS containing

φ(Ω), and denote again by p the restriction to X of the map p : OS → Cn. We claim that

{(X, p);φ : Ω→ X} is an S-envelope of holomorphy of Ω.

To see this, we first observe that, for all s ∈ S, we have a holomorphic function Fs on

OS defined as follows. If gz ∈ OzS is defined by (V, {gs}s∈S), we set Fs(gz) = gs(z). The

holomorphicity of Fs is immediate from the definition of the natural projection p from OS to

Cn. We denote the restriction of Fs to X again by Fs. Now, by the very definition of φ, it

follows that Fs ◦ φ = s for all s ∈ S. Hence, {(X, p);φ : Ω→ X} is an S-extension of (Ω, p0).

To prove that it is, indeed, the S-envelope of holomorphy of (Ω, p0), let {(X ′, p′);φ′ : Ω→ X ′}
be given with p′ ◦ φ′ = p0 and suppose that for all s ∈ S, there exists F ′s ∈ O(X ′) such that

s = F ′s ◦ φ′. Let S ′ = {F ′s}s∈S and u : X ′ → OS be the map φ(p′, S ′) (defined in the

beginning of the proof). Since F ′s ◦ φ′ = s and p′ ◦ φ′ = p0, we have φ = u ◦ φ′ (locally,

F ′s ◦ p−1 = F ′s ◦ φ′ ◦ φ′
−1 ◦ p′−1 = s ◦ p−1

0 ). Clearly, p′ = p ◦ u.

Before moving ahead, we must attempt to demystify the above construction. What insight

lies behind realising the envelope of holomorphy of a Riemann domain as a certain path

component of the sheaf of S-germs of holomorphic functions? While exploring the phenomenon

of analytic continuation in univariate complex analysis, one exploits the concept of analytic

continuation along paths via chains of discs. However, this procedure can lead to multi-

valuedness around the initial point when one analytically continues a germ of analytic function

along a closed path. Therefore, we are led to consider the collection of all possible germs of

holomorphic functions — i.e. the sheaf of germs of holomorphic functions over C. Now, given

9



Chapter 2 : Envelopes of Holomorphy

a germ fa and a path γ starting at a along which this germ can be analytically continued, we

resolve the problem of multi-valuedness by considering a lifting of γ to the sheaf of germs of

holomorphic functions and viewing the analytic continuation of (U, f) – i.e. a representative

of fa – as a true function defined on a suitable subset of the sheaf of germs of holomorphic

functions. It is this well-known construction that motivates the choice of OS, or rather, a

suitable connected component of it, as the S-envelope of holomorphy of a given Riemann

domain. In our case, since we try to extend more than one function at the same time, we are

led to work with S-germs.

Proposition 2.5. Let (Ω, p0) be a connected Riemann domain over Cn and f ∈ O(Ω). Let

F be its extension to the envelope of holomorphy (X, p). Then, f(Ω) = F (Ω). In particular,

if f is bounded, |f(x)| < M for all x ∈ Ω, then F is bounded and |F (x)| < M for all x ∈ X.

Proof. Since f = F ◦ φ, we have f(Ω) ⊂ F (X). Suppose that there exists a c ∈ F (X) \ f(Ω).

Then, 1
(f−c) ∈ O(Ω). If G is its extension to X, then G · (F − c) is the extension to X of

1 = (f − c)−1 · (f − c), so that G · (F − c) ≡ 1 on X. This implies that F (x) 6= c for all x ∈ X,

a contradiction.

Looking back at our intuitive notion of an envelope of holomorphy, we expect to achieve

nothing new by constructing its envelope of holomorphy. To realise this in terms of Riemann

domains, we first make a definition.

Definition 2.6. Let (Ω, p0) be a connected Riemann domain over Cn and S ⊂ O(Ω). Ω is

called an S-domain of holomorphy if the natural map of Ω into its S-envelope of holomorphy

is an isomorphism. If S = O(Ω), Ω is simply called a domain of holomorphy.

That the envelope of holomorphy of a Riemann domain over Cn is a domain of holomorphy,

is a consequence of the following proposition. The proof of this proposition suggests why we

might be interested in studying S-envelopes of holomorphy when S ( O(Ω).

Proposition 2.7. Let (Ω, p0) and (Ω′, p′0) be connected Riemann domains over Cn, and

{(X, p);φ : Ω→ X} and {(X ′, p′);φ′ : Ω′ → X ′} their envelopes of holomorphy. Let u : Ω →
Ω′ be a holomorphic map which is a local isomorphism. Then, there exists a holomorphic map

ũ : X → X ′ such that the diagram

Ω u //

φ
��

Ω′

φ′

��
X ũ // X ′

commutes.

We use the following results to prove the above proposition. Their proofs are elementary,

and we shall skip them.

10
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Lemma 2.8. Let (Ω, p0) be a Riemann domain over Cn and f : Ω → Cn be a holomorphic

map. Suppose that det(df)a 6= 0 for some a ∈ Ω. Then there exist neighbourhoods U of a and

V of f(a) such that f(U) ⊂ V and f
∣∣
U

is an isomorphism into V .

Lemma 2.9. Let (Ω, p0) and (Ω′, p′0) be connected Riemann domains over Cn, and

{(X ′, p′);φ′ : Ω′ → X ′} be the T -envelope of holomorphy of (Ω′, p′0), T ⊂ O(Ω′). Let u : Ω→
Ω′ be a local holomorphic isomorphism, and let S = {f◦u|f ∈ T}. Then, {(X ′, p′);φ′ ◦ u : Ω→ X ′}
is the S-envelope of holomorphy of (Ω, p′0 ◦ u).

Proof of Proposition 2.7. Let v = φ′ ◦ u. Since, u and, as was shown in the proof of Theorem

2.4, φ′ are local holomorphic isomorphisms, so is v. Consider the map ψ = p′ ◦ v : Ω → Cn.

The ψ = (ψ1, ..., ψn) is also a local isomorphism and each ψj is holomorphic on Ω (relative

to p0). Let η be the complex Jacobian determinant η = det

(
∂ψi
∂xj

)
. Then, since ψ is a

local isomorphism, η(x) 6= 0 for all x ∈ Ω. Let Ψj be the extension of ψj to X, and let

Ψ = (Ψ1, ...,Ψn). Note that Ψ is such that the following diagram commutes:

Ω u //

φ
��

ψ

!!

Ω′
φ′ // X ′

p′}}
X

Ψ // Cn

Let H be the extension of η to X. Then, by the Identity Theorem, H = det

(
∂Ψi

∂xj

)
. By

Proposition 2.5, H(x) 6= 0 for all x ∈ X. Hence, by Lemma 1, Ψ : X → Cn is a local

isomorphism. Moreover Ψ ◦ φ = ψ(= p′ ◦ φ′ ◦ u).

Now, consider (Ω, ψ) and {(X ′, p′);φ′ ◦ u = v : Ω→ X ′}. Let S = {f ◦ u|f ∈ O(Ω′)} =

{F ◦ v|F ∈ O(X ′)}. Since, S ⊂ O(Ω) (relative to ψ), by Lemma 2, {(X ′, p′); v : Ω→ X ′} is

the S-envelope of holomorphy of (Ω, ψ). Now any holomorphic function on Ω can be extended

to X, so that {(X,Ψ);φ : Ω→ X} is an S-extension of (Ω, ψ). Since (X ′, p′) is the S-envelope

of holomorphy of (Ω, ψ), there is a holomorphic map ũ : X → X ′ such that p′ ◦ ũ = Ψ and

ũ ◦ φ = v,i.e. the following diagram commutes:

Ω
v(=φ′◦u) //

φ
��

X ′

p′

��
X Ψ //

ũ

77

Cn

This immediately leads us to our desired goal.

Corollary 2.10. If {(X, p);φ : Ω→ X} is the envelope of holomorphy of a Riemann domain

over Cn (Ω, p0), then (X, p) is a domain of holomorphy.

11
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Proof. Let {(X ′, p′);φ′ : X → X ′} be the envelope of holomorphy of (X, p). We see from the

proof of theorem 2.4 that φ : Ω → X is a local analytic isomorphism. Hence, by Lemma 2,

{(X ′, p′);φ′ ◦ φ : Ω→ X ′} is the S-envelope of holomorphy of (Ω, p ◦ φ), where S = {F ◦ φ :

F ∈ O(X)}. But S = O(Ω). Hence, {(X ′, p′);φ′ ◦ φ : Ω→ X ′} is the envelope of holomorphy

of (Ω, p ◦ φ). Consider the identity map from (Ω, p ◦ φ) onto (Ω, p0). Applying Proposition

2.7, we get a map φ̃ : X ′ → X such that the following diagram commutes:

Ω id //

φ′◦φ
��

Ω

φ
��

X ′
φ̃ // X

Therefore, φ̃ ◦ φ′ ◦ φ = φ. This implies that φ̃ ◦ φ′
∣∣
φ(Ω)
≡ id

∣∣
φ(Ω)

and, therefore, φ̃ ◦ φ′ is the

identity on X. Similarly, since φ′ ◦ φ̃ ◦ φ′ ◦ φ = φ′ ◦ φ, φ′ ◦ φ̃ is identity on X ′. Hence, φ′ is an

isomorphism.

We close this chapter by comparing all of the above concepts with the classical definition

of a domain of holomorphy for a domain Ω  Cn (note that this is a Riemann domain (Ω, p0)

over Cn, where p0 is just the inclusion map). In view of the sheaf-theoretic construction of

of the envelope of holomorphy and Corollary 2.10, Ω  Cn is not a domain of holomorphy

precisely if there is a path γ : [0, 1]→ Cn such that:

• γ(0) ∈ Ω,

• The set γ([0, 1]) crosses the boundary of Ω, and

• the O(Ω)-germ at γ(0) represented by (Ω,O(Ω)) can be analytically continued along γ.

The following definition — which we encounter when working with domains in Cn — is just

a paraphrasing of the above without reference to any paths γ.

Definition 2.11. A domain Ω ⊂ Cn is called a domain of holomorphy if there does not exist

any pair (Ω1,Ω2) of open sets that satisfy the following:

(i) ∅ 6= Ω1 ⊂ Ω2 ∩ Ω,

(ii) Ω2 is connected and Ω ( Ω ∪ Ω2; and

(iii) For each f ∈ O(Ω), ∃F ∈ O(Ω2) such that f
∣∣
Ω1
≡ F

∣∣
Ω1
.

12



3. A Folk Theorem

In Chapter 2, we saw an abstract construction of the envelope of holomorphy of a domain

Ω ⊆ Cn, n ≥ 2 (in fact, we saw this for a Riemann domain spread over Cn), but it is very

difficult to infer its geometry. Theorem 1.1 shows that the envelope of holomorphy of the Ω

discussed there is Dn. This result is proved by exploiting the symmetries possessed by Ω (Ω is

Reinhardt). The aim of this and the next chapter is to deduce the geometry of the envelope

of holomorphy of Ω when it has fewer symmetries.

We start with the following theorem which is, as mentioned in Chapter 1, a generalization

of a folk result (Theorem 1.7). Note that the conclusion of this theorem is same as that of

Theorem 1.1, but Ω is decidedly not Reinhardt in general.

Theorem 3.1. Let Φ ∈ O(Dk;Cn−k) ∩ C(Dk;Cn−k) be such that Φ(∂(Dk)) ⊆ Dn−k. Let Ω be

a connected neighbourhood of S := graph (Φ) ∪ (S1)k×Dn−k such that Ω ∩ Dn is connected.

If f ∈ O(Ω), then f extends holomorphically to Dn.

Proof. Let f ∈ O(Ω). Since (S1)
k ×Dn−k is compact and Ω is an open set containing (S1)

k ×
Dn−k, ∃ε > 0 such that Ann(0; 1 − ε, 1 + ε)k × D(0; 1 + ε)n−k ⊆ Ω. So, for each fixed

w ∈ D(0; 1 + ε)n−k, we can define

fw(z) = f(z, w)

which is well-defined and holomorphic in Ann(0; 1− ε, 1 + ε)k. As Ann(0; 1− ε, 1 + ε )k is

a Reinhardt domain, each fw, by Theorem 1.3, has a Laurent series expansion as follows:(
f |Ann(0;1−ε,1+ε)k × D(0;1+ε)n−k

)
(z, w) = fw(z) =

∑
α∈Zk

aα(w)zα

where

aα(w) =
1

(2πi)k

∫
|z1|=1

· · ·
∫
|zk|=1

fw(z1, z2, ..., zk)

zα1+1
1 · · · zkαk+1

dzk...dz1

=
1

(2πi)k

∫
|z1|=1

· · ·
∫
|zk|=1

f(z1, z2, ..., zk, w)

zα1+1
1 · · · zkαk+1

dzk...dz1, (3.1)

for all α ∈ Zk and w ∈ D(0; 1 + ε)n−k. Using Leibniz’s theorem for differentiating under the

integral sign, we observe that aα(w) ∈ O(D(0; 1 + ε)n−k) ∀α ∈ Zk.

13
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Since graph(Φ) ⊆ Ω is compact, ∃δ > 0 such that δ < ε
2

and ∆((z,Φ(z)); (2δ, ..., 2δ)) ⊆ Ω

for every z ∈ Dk. Fix w ∈ D(0; δ)n−k. Now, for any ζ ∈ D(0; 1 + δ) ⊆ C and z ∈ (S1)
k ⊆ Ck,

|(ζΦ(z) + w)j| < 1 + 2δ < 1 + ε ; j = 1, ..., n − k, where zj represents the jth co-ordinate of

z ∈ Cn−k. So, we can define

Gw
α(ζ) =

1

(2πi)k

∫
|z1|=1

· · ·
∫
|zk|=1

f(z1, z2, ..., zk, ζΦ(z1, z2, ..., zk) + w)

zα1+1
1 · · · zkαk+1

dzk...dz1

for ζ in D(0; 1 + δ). Note that, for a fixed w ∈ D(0; δ)n−k, we may differentiate under the

integral sign to obtain:

∂Gw
α

∂ζ̄

∣∣∣∣
ζ

=
1

(2πi)k

∫
Tk

n−k∑
l=1

[
∂f

∂zl+k
(z, ζΦ(z) + w) ∂ζ̄(ζΦ(z) + w)l

∣∣
ζ

+ ∂f
∂ ¯zl+k

(z, ζΦ(z) + w) ∂ζ̄(ζΦ(z) + w)l

∣∣∣
ζ

]
zα1+1

1 zα2+1
2 · · · zkαk+1

dz

=0 ∀ζ ∈ D(0; 1 + δ).

Hence, Gw
α ∈ O(D(0; 1 + δ)) ∀α ∈ Zk and w ∈ D(0; δ)n−k.

Observe that, if we fix ζ ∈ D(1; δ), (z, ζΦ(z) + w) ∈ Ω ∀z ∈ Dk and ∀w ∈ D(0; δ)n−k,

owing to our choice of δ. Hence, we can define

Hw
ζ (z) := f(z, ζΦ(z) + w) ∀z ∈ Dk,

where ζ ∈ D(1; δ) and w ∈ D(0; δ)n−k. Hw
ζ (z) ∈ C(Dk)

⋂
O(Dk). As Dk is a Reinhardt domain,

by Theorem 1.3 , there exists a Laurent series expansion for Hw
ζ as follows:

Hw
ζ (z) =

∑
α∈Zk

bα(w, ζ)zα,

where bα(w, ζ) is uniquely determined by the following expression:

bα(w, ζ) =
1

(2πi)k

∫
|z1|=1

· · ·
∫
|zk|=1

Hw
ζ (z1, z2, ..., zk)

zα1+1
1 · · · zkαk+1

dzk...dz1. (3.2)

As Dk is a Reinhardt domain containing 0, bα(w, ζ) vanishes for any α ∈ A := {α ∈ Zk :

αj < 0 for some j = 1, ..., k}. But

14



Chapter 3 : A Folk Theorem

1

(2πi)k

∫
|z1|=1

· · ·
∫
|zk|=1

Hw
ζ (z1, ..., zk)

zα1+1
1 · · · zkαk+1

dzk...dz1

=
1

(2πi)k

∫
|z1|=1

· · ·
∫
|zk|=1

f(z1, ..., zk, ζΦ(z1, ..., zk) + w)

zα1+1
1 · · · zkαk+1

dzk...dz1 (3.3)

= Gw
α(ζ) ∀ζ ∈ D(1; δ) and α ∈ Zk.

From 3.2, 3.3 and our choice of w and ζ, we have Gw
α |D(1;δ) ≡ 0 ∀α ∈ A and w ∈ D(0; δ)n−k.

We have shown that Gw
α is holomorphic in D(0; 1 + δ) ⊇ D(1; δ). Hence, by the Identity

Theorem, Gw
α ≡ 0 ∀α ∈ A and w ∈ D(0; δ)n−k. In particular, Gw

α(0) = 0 ∀α ∈ A and w ∈
D(0; δ)n−k. Refer to (3.1) and observe that Gw

α(0) = aα(w) ∀α ∈ Zk and w ∈ D(0; δ)n−k.

Hence, due to the holomorphicity of each aα, we can apply the Identity Theorem to conclude

that aα ≡ 0 ∀α ∈ A. Therefore, in fact,

f(z, w) =
∑
α∈Nk

aα(w)zα

in Ann(0; 1− ε, 1 + ε)k ×D(0; 1 + ε)n−k. Now, define f̃ : Dn → C as

f̃(z, w) :=
∑
α∈Nk

aα(w)zα

and observe that for each fixed w, the series on the right-hand side converges absolutely on

Dn−k. Hence, f̃ ∈ O(Dn) and f̃
∣∣∣
Ann(0;1−ε,1+ε)k×D(0;1+ε)n−k

≡ f
∣∣∣
Ann(0;1−ε,1+ε)k×D(0;1+ε)n−k

.

Since Ω is a connected neighbourhood of Ann(0; 1− ε, 1 + ε)k ×D(0; 1 + ε)n−k, we conclude

that f̃ is the required extension of f .

The following result about the geometry of the envelope of holomorphy of the Ω described

in the previous theorem is nearly immediate.

Corollary 3.2. Let Ω be the domain described in Theorem 3.1. If (Ω̃, p) denotes the envelope

of holomorphy of Ω, then p(Ω̃) contains Dn.

Proof. As Ω ∩ Dn is connected, {Ω ∪ Dn, i : Ω ↪→ Ω ∪ Dn} is an O(Ω)-extension of (Ω, p0),

where p0 : Ω ∪ Dn → Cn is the inclusion map. Referring to Definition 2.3, we see that

∃ a holomorphic map u : Ω ∪ Dn → X such that p0 = p ◦ u. Hence p(u(Dn)) = Dn.
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4. The Chirka-Rosay Extension Theorem

This chapter is devoted to studying a very surprising theorem by Chirka. For this purpose we

need a definition. A Hartogs figure in Cn is a domain of the form that appears in Theorem 1.1.

Theorem 4.1 (Chirka, [5]). Let Φ ∈ C(D) be such that Φ(∂D) ⊆ D and and satisfies

supD |Φ| ≤ 1. Let Ω be a connected neighbourhood of S := graph(Φ) ∪ (∂D) × D such that

Ω ∩ D2 is connected. If (Ω̃, p) denotes the envelope of holomorphy of Ω, then p(Ω̃) contains a

Hartogs figure.

We urge the reader to compare the above theorem with the folk theorem stated in Chapter

1 (i.e. Theorem 1.7). Its hypothesis would resemble that of Theorem 1.7 but for one stark

difference: Φ above is merely continuous, and is permitted to be extremely non-smooth. This

is what makes Chirka’s theorem a very unexpected result. Referring to Chapter 3, we see that

the proof of the folk theorem indeed proceeds by first showing that any f ∈ O(Ω) extends

holomorphically to a Hartogs figure. The conclusion of the above theorem is somewhat weaker

than this. We will remark upon this difference at the end of this chapter.

The following proposition, which claims the existence of a solution to a particular non-

linear ∂̄-bar equation, is an essential ingredient in the proof of Theorem 4.1. The bulk of this

chapter is devoted to its proof. This proposition was undertaken by Rosay and Chirka with

the aim of simplifying Chirka’s original proof in [5]. In that proof, Chirka worked with very

different Banach spaces from those used below, which had resulted in much more complicated

estimates.

Proposition 4.2. Let F be the space of continuously differentiable functions defined on C2,

with compact support. Then, for every ψ ∈ F , there exists a unique f defined on C, tending

to 0 at infinity, which is a solution to

∂f

∂z̄
= ψ(z, f(z)). (4.1)

This solution depends continuously on ψ ∈ F if the support of ψ is restricted to be in a given

compact set, and if we use the sup norm for f and the C1 norm for ψ.

The above proposition, in conjunction with Theorem 4.6, yields Theorem 4.1. In the proof

that follows, a few ambiguities in Chirka and Rosay’s proof have been resolved. For this, we
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need the following quantitative version of the Implicit Function Theorem (the gaps in Chirka

and Rosay’s proof seem to arise from the lack of a clear statement of the Implicit Function

Theorem used therein).

Theorem 4.3. Let E1 and E2 be Banach spaces and Θ : E1 × E2 → E1 be such that Θ ∈
C1(E1 × E2). Suppose a = (a1, a2) ∈ E1 × E2 is such that

• Θ(a1, a2) = 0,

• ∂1Θ(a1, a2) : E1 → E1 is invertible; and

• both ∂1Θ(a1, a2) and [∂1Θ(a1, a2)]−1 are bounded.

Let Λ :=
∥∥∥[∂1Θ(a1, a2)]−1

∥∥∥
E1

and (δ1, δ2) be so small that

‖∂1Θ(x)− ∂1Θ(a)‖E1

‖∂2Θ(x)− ∂2Θ(a)‖E2→E1

}
<

1

2Λ

∀x ∈ BE1(a1; δ1) × BE2(a2; δ2). Then, there exists θ : BE2(a2; δ2) → E1, θ ∈ C1(BE2(a2; δ2))

such that θ(a2) = a1 and Θ(θ(x2), x2) = 0 ∀x2 ∈ BE2(a2; δ2).

It is now time to fix, once and for all, the Banach space in which we will seek a solution to

equation (4.1). For this, let

E :=

{
f ∈ C0(C) :

∂f

∂z̄
exists and belongs to C0(C) in the sense of distributions

}
.

The space E is equipped with the norm ‖f‖E = sup(|f | + |∂f
∂z̄
|). It can be easily verified that

(E , ‖ · ‖E) is a Banach space. Working with this space simplifies the problem as, for f ∈ E ,

equation (4.1) is equivalent to

f =
1

πz
∗ ψ(z, f(z)). (4.2)

To see this, let f1 be a continuous solution of equation (4.2). As ψ is compactly supported

in C2, and, consequently, ψ̃ : z 7→ ψ(z, f(z)) is compactly supported in C, we can set K :=

sup{|y| : y ∈ supp(ψ̃)}. Now, for |z| > K + n,

|f1(z)| =

∣∣∣∣∣∣
∫
C

1

π(z − w)
ψ(w, f(w))dA(w)

∣∣∣∣∣∣
≤ sup |ψ|

∫
supp(ψ̃)

∣∣∣∣ 1

π(z − w)

∣∣∣∣ dA(w) (4.3)

≤sup |ψ|
πn

A, A is a constant independent of ψ and z.
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Hence, |f1(z)| → 0 as |z| → ∞. Lastly, integrating the right-hand side of equation (4.2)

against ∂φ/∂z̄, where φ ∈ C∞C (C), yields −
∫
C ψ(z, f(z))φ(z)dA(z). This implies that any

continuous solution of equation (4.2) belongs to E and is, indeed, a solution to equation (4.1)

in the sense of distributions. Conversely, if f2 ∈ E is a solution of (4.1), then it can differ

from f1 by a holomorphic function, say h. But, as both f1 and f2 vanish at infinity, h ≡ 0.

Therefore, we can now shift our entire focus to equation (4.2), looking at which, it is possible

to guess how the Implicit Function Theorem might have a role to play. We also need to choose

a Banach space for ψ. Let

F0 := {ψ ∈ C1
C(C2) : supp(ψ) ⊂ D2}.

There is no loss of generality in restricting the support of ψ to the unit polydisc. We will

require ψ in equation (4.1) to belong to (F0, ‖ · ‖1), where ‖ · ‖1 is the C1 norm.

We are nearly ready to prove Proposition 4.2. The following result is an extremely crucial

component.

Lemma 4.4. Let h ∈ E be such that

(i)
∂h

∂z̄
has compact support ; and

(ii) for some constant C > 0,

∣∣∣∣∂h∂z̄
∣∣∣∣ ≤ C|h|.

Then, h ≡ 0.

Proof. We use the method of integrating factors. The aim is to obtain a factor µ, bounded at

infinity, such that µh is holomorphic in C, i.e.,
∂(µh)

∂z̄
= 0. For this purpose, define

λ = −∂h/∂z̄
h

at the points z where h(z) 6= 0, and (say) λ(z) = 0 if h(z) = 0. λ is bounded and has

compact support due to (ii) and (i) respectively. Consequently, we can define u := 1
πz
∗ λ.

We observe that

a) u is continuous,

b) |u(z)| → 0 as |z| → 0; and

c)
∂u

∂z̄
= λ in the sense of distributions.

a) is a consequence of the Dominated Convergence Theorem, while b) and c) can be proved

by repeating arguments used while establishing the equivalence of equations (4.1) and (4.2).

Set µ := eu. Then, ∂(µh)/∂z̄ = 0 off the zero set of h. But µh is continuous everywhere and

tends to 0 at infinity. Hence, by the Maximum Modulus Theorem — applied to µh on each

connected component of C \ h−1{0} — h ≡ 0.
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We will also employ the following estimate. It can be derived using, as in the proof of

Lemma 4.4, the technique of integrating factors followed by the Maximum Principle. We just

have to make a careful record of the magnitude of the relevant partial derivatives encountered.

Since this estimation is essentially routine, we leave the details for the reader to fill in.

Lemma 4.5. For every M > 0, there exists CM > 0 such that, for every ξ ∈ E, and every

continuous function χ with support in the unit disc {z ∈ C : |z| ≤ 1} satisfying |χ(z)| ≤
M |ξ(z)|, we have ∥∥∥∥ξ − 1

πz
∗ χ
∥∥∥∥
E
≥ CM‖ξ‖E .

Proof of Proposition 4.2. Uniqueness. Assume f, g ∈ E such that ∂f/∂z̄ = ψ(z, f(z)) and

∂g/∂z̄ = ψ(z, g(z)). Set h = f − g. Clearly, h ∈ E and ∂h/∂z̄ = ψ(z, f(z)) − ψ(z, g(z)) is

compactly supported. Also, as ψ ∈ C1
C(C2), ∃R > 0 such that |ψ(z, f(z)) − ψ(z, g(z))| ≤

R|f(z)− g(z)|. Hence, by Lemma 4.4, h ≡ 0, i.e., f ≡ g.

Existence. It suffices to prove the following claim:

(∗) For every M > 0, there exists εM > 0 such that if ψ ∈ F0 with ‖ψ‖1 ≤M , and if equation

(4.2) is solvable (with f in E), then for every ψ′ ∈ F0 satisfying ‖ψ − ψ′‖1 ≤ εM , the

equation f ′ = 1
πz
∗ ψ′(z, f ′(z)) is solvable, and f ′ depends continuously on ψ′.

For, if we are seeking a solution to equation (4.2) for ψ ∈ F0, we let n ∈ N be such that
1
n
< εM
‖ψ‖1 , where εM corresponds to M = ‖ψ‖1 as in (∗). Letting ψ̃j = j

n
ψ, j ≤ n, we connect,

in finitely many steps, ψ to 0. Equation (4.2) is trivially solvable for 0.

The problem has now been reduced to a claim which facilitates the application of the

Implicit Function Theorem mentioned above (Theorem 4.3). We define Θ : E × F0 → E as

Θ : (f, ψ) 7→ f − 1

πz
∗ ψ(z, f(z)).

Let M > 0 and ψ0 ∈ F0 be such that ‖ψ0‖1 ≤ M and ∃f 0 ∈ E such that ∂f 0/∂z̄ =

ψ0(z, f 0(z)), i.e., Θ(f 0, ψ0) = 0. If Θ and a = (f 0, ψ0) satisfy the conditions of Theorem 4.3,

then we obtain a δ2 such that equation (4.2) is solvable for all ψ ∈ BF0(ψ
0; δ2). This proves

(∗) but for one obstruction. We emphasise here that, in general, the δ2 > 0 in Theorem 4.3

will depend on the point a and the value of the corresponding Λ. Our aim is, therefore, to

show that:

1) Θ and a = (f 0, ψ0) satisfy all the hypotheses of Theorem 4.3; and

2) δ2 can be made indepedent of the point a = (f, ψ), as long as ‖ψ‖ ≤M .
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Remark. Observe that δ1 is free to depend on the point a. This important observation will be

exploited in the pursuit of our second aim.

Step 1. We now itemise and prove the various components of our first aim. We keep in mind

that the ∂-derivative of the function f − 1
πz
∗ ψ(z, f(z)) is ∂f/∂z̄ − ψ(z, f(z)).

a) Θ ∈ C1(E × F0): Evaluating Θ at (f + ξ, ψ), where ξ is an infinitesimal increment, leads

to the differential

∂1Θ(f, ψ)(ξ) = ξ − 1

πz
∗ [ψw(z, f(z))ξ(z) + ψw̄(z, f(z))ξ(z)]. (4.4)

Similarly, evaluating Θ at (f, ψ + η), η an infinitesimal increment, we obtain

∂2Θ(f, ψ)(η) =
1

πz
∗ η(z, f(z)). (4.5)

The continuity of Θ, ∂1Θ and ∂2Θ in both the variables is manifest.

b) ∂1Θ(f0, ψ0) is bounded: For the sake of convenience, let, for ξ ∈ E ,

α0
ξ(z) := ψ0

w(z, f 0(z))ξ(z) + ψ0
w̄(z, f 0(z))ξ(z), z ∈ C.

We see that |α0
ξ(z)| ≤ ‖ξ‖E‖ψ0‖1. Thus,

‖∂1Θ(f 0, ψ0)(ξ)‖E = sup
w∈C

{∣∣∣∣ξ(w)−
(

1

πz
∗ α0

ξ(z)

)
(w)

∣∣∣∣+

∣∣∣∣∂ξ∂z̄ (w)− α0
ξ(w)

∣∣∣∣}

≤‖ξ‖E

1 + ‖ψ0‖1

∫
D

∣∣∣∣ 1

πz

∣∣∣∣ dA(z) + ‖ξ‖E(1 + ‖ψ0‖1)

 .
≤‖ξ‖E

2 +M

1 +

∫
D

∣∣∣∣ 1

πz

∣∣∣∣ dA(z)

 .
Hence ∂1Θ(f 0, ψ0) is bounded and its operator norm is bounded above by a constant, say C1,

depending only on M .

c) ∂1Θ(f0, ψ0) is invertible: Let Ξ : E → E be the operator

ξ 7→ 1

πz
∗ [ψ0

w(z, f 0(z))ξ(z) + ψ0
w̄(z, f 0(z))ξ(z)] =

1

πz
∗ α0

ξ(z).

We claim that Ξ is compact. For this, let V ⊂ E be open and bounded and U := Ξ(V ). Let

L > 0 be such that ‖ζ‖E ≤ L ∀ζ ∈ U (L exists as Ξ is bounded). Define Ũ := {φ ∈ C1
0(C)∩E :

‖φ‖E ≤ L+1}. Being a bounded set in (C1
0(C)∩E , ‖·‖E), Ũ is equicontinuous as a consequence

of a standard estimate that involves the generalised Cauchy integral formula and exploits the
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uniform bound on the ∂/∂z-derivatives. Now, for any ζ ∈ U , as ∂ζ/∂z̄ ∈ C0(C) in the sense of

distributions, there exists a sequence {φ̃n}n∈N in CC(C) such that sup |φ̃n−∂ζ/∂z̄| → 0 as n→
∞. Now, let φn := 1

πz
∗ φ̃n, n ∈ N. Then, φn ∈ C1

0(C) ∩ E and φn converges uniformly to

ζ as n → ∞. Without loss of generality, as {φn}n∈N converges to ζ in the ‖ · ‖E norm,

‖φn‖E ≤ L + 1, n ∈ N. Thus, every ζ ∈ U is the uniform limit of some sequence {φn}n∈N in

Ũ ⊂ C1
0(C)∩E . As equicontinuity is preserved under the action of taking uniform limits, U is

also equicontinuous. Further, since α0
ξ(z) is compactly supported on C, we repeat arguments

used earlier (refer to (4.3)) to obtain estimates as follows:

|z| > 1 + n⇒ |Ξ(ξ)(z)| ≤ A‖ξ‖E‖ψ‖1

πn
≤ AL‖ψ‖1

πn
∀ξ ∈ V.

Thus, U is bounded, equicontinous and given ε > 0, there exists a compact K ⊂ C such

that |ζ(z)| < ε ∀z /∈ K and ∀ζ ∈ U . This tells us that U is totally bounded and, hence,

pre-compact in (C0(C) ∩ E , ‖ · ‖∞). It is, as a consequence, easily verified that U is, in fact,

pre-compact in (E , ‖ · ‖E).

Coming back to ∂1Θ(f 0, ψ0), we have just shown that it is the perturbation of the identity

by a compact operator. So ∂1Θ(f 0, ψ0) is a Fredholm operator of index 0. This means that

dim[ker∂1Θ(f 0, ψ0)] =dim[coker∂1Θ(f 0, ψ0)] and the range of ∂1Θ(f 0, ψ0) is closed. Thus, to

achieve (c), it is sufficient to show that Θ(f 0, ψ0) is injective. Now, if ∂1Θ(f 0, ψ0)(ξ) = 0, i.e.,

ξ =
1

πz
∗ α0

ξ(z)

then, then, it is easy to conclude that ξ satisfies the hypotheses of Lemma 4.1. Therefore,

ξ ≡ 0, whence ∂1Θ(f 0, ψ0) is invertible.

d) [∂1Θ(f0, ψ0)]−1 is bounded: As ∂1Θ(f 0, ψ0) is surjective, any ζ ∈ E can be written as

ξ − 1
πz
∗ α0

ξ(z) for some ξ ∈ E , i.e., [∂1Θ(f 0, ψ0)]−1(ζ) = ξ. Also, |α0
ξ(z)| ≤ ‖ψ0‖F0|ξ(z)| ≤

M |ξ(z)|. Hence, by Lemma 4.5,

∥∥[∂1Θ(f 0, ψ0)]−1(ζ)
∥∥
E ≤ C2‖ζ‖E ,

where C2 = 1
CM

depends only on M .

Step 2. To achieve our second goal, we first observe that ∂1Θ is uniformly continuous in the

second variable, while ∂2Θ is altogether independent of it. Therefore, ∃εM > 0 such that

‖ψ′ − ψ‖1 < εM ⇒ ‖∂1Θ(f, ψ′)− ∂1Θ(f, ψ)‖E <
1

4C2

,
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for all f ∈ E and ψ ∈ F0 such that ‖ψ‖1 ≤M . Now, let ν0 > 0 be such that

‖f − f 0‖E < ν0 ⇒
‖∂1Θ(f, ψ0)− ∂1Θ(f 0, ψ0)‖E
‖∂2Θ(f, ψ0)− ∂2Θ(f 0, ψ0)‖F0→E

}
<

1

4C2

Thus, ∀(f, ψ) ∈ BE(f 0; ν0)×BF0(ψ
0; εM),

‖∂1Θ(f, ψ)− ∂1Θ(f 0, ψ0)‖E ≤ ‖∂1Θ(f, ψ)− ∂1Θ(f, ψ0)‖E + ‖∂1Θ(f, ψ0)− ∂1Θ(f 0, ψ0)‖E

≤ 1

2C2

≤ 1

2‖[∂1Θ(f 0, ψ0)]−1‖E
,

and

‖∂2Θ(f, ψ)− ∂2Θ(f 0, ψ0)‖F0→E = ‖∂2Θ(f, ψ0)− ∂2Θ(f 0, ψ0)‖F0→E ≤
1

2‖[∂1Θ(f 0, ψ0)]−1‖E
.

Hence by Theorem 4.3, there exists θ : BF0(ψ
0; εM) → E , θ ∈ C1(BF0(ψ

0; ε)) such that

θ(ψo) = f 0 and Θ(θ(ψ), ψ) = 0 ∀ψ ∈ BF0(ψ
0; εM), i.e., equation (4.2) is solvable for ψ, a

solution being θ(ψ), ∀ψ ∈ BF0(ψ
0; εM). But, since εM depends only on M , the above proof

can be repeated for any ψ ∈ F0 as long as ‖ψ‖1 ≤M and f = 1
πz
∗ ψ(z, f(z)) is solvable with

f in E .

The above proof does not work in higher dimensions. It breaks down when one tries to

imitate Lemma 4.4. If we were solving this problem in C3, for instance, we would require a

solution, in some subspace of C0(C;C2), to ∂f = ψ, where ψ ∈ C1
C(C3;C2). But it is not true

that ∣∣∣∣∂h1

∂z̄

∣∣∣∣ ≤ C(|h1|+ |h2|) and

∣∣∣∣∂h2

∂z̄

∣∣∣∣ ≤ C(|h1|+ |h2|),

and vanishing at infinity, imply h1 = h2 = 0. For this, take h1 = h2 = 1/z for |z| > 1, and

extend them in the unit disc such that h1 and h2 never vanish simultaneously. The required

inequalities clearly hold for all C > 0 outside the unit disc. Within the unit disc, we can

obtain a bound on
|∂hi/∂z̄|
|h1|+ |h2|

, i = 1, 2.

The next key result is a paraphrasing of a result known as the Chirka-Stout Kontinuitätssatz

that is usable in the situation of our interest.

Theorem 4.6 (Chirka-Stout, [7]). Let X be a domain of holomorphy in C2. Let Ω be a

subdomain of X and let D b Ω be a relatively compact open subset. Suppose Ψ : D×[0, 1]→ X

is a continuous function with the following properties:

• For each t ∈ [0, 1], the set ψt := Ψ(D × {t}) \ D is a complex-analytic subvariety of

X \D.

• There exists a t0 ≥ 0 such that ψt0 6= ∅ and such that ψt ⊂ Ω ∀t ≤ t0.
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Let (Ω̃, p) denote the envelope of holomorphy of Ω. Then ψ1 ⊂ p(Ω̃).

We want to emphasise that the original Chirka-Stout Kontinuitätssatz is much more general

than the above statement, and examines the relation between continuous families of holomor-

phic p-chains and the envelopes of holomorphy of domains of arbitrary dimensions. Its proof

involves some sophisticated facts about complex-analytic subvarieties that I am not currently

familiar with (e.g. Bishop’s Theorem on the limits of analytic sets, Wirtinger’s Inequality,

etc.). Hence, Theorem 4.6 will be used without proof.

Proof of Theorem 4.1. Let Φ and Ω be as given. Let ε > 0 be so small that Ann(0; 1− 2ε, 1 +

2ε)×D(0; 1 + ε) ⊂ Ω. Construct Φ̃ : C→ C such that it has the following properties:

∗ Φ̃ ∈ C1(C),

∗ |Φ̃(z)− Φ(z)| is so small, for |z| < 1− ε, that graph(Φ̃
∣∣
D(0;1−ε)) ⊂ Ω; and

∗ Φ̃(z) = 0, ∀z such that |z| ≥ 1.

Define S̃ := graph(Φ̃) ∪ ∂D× D. By construction, S̃ ⊂ Ω. Let U and D be two open sets in

Ω satisfying:

S̃ ⊂ U ⊂⊂ D ⊂⊂ Ω ∩
(
D(0; 1 + ε)× C

)
.

Let χ ∈ C∞C (C2) with

∗ χ−{1} = U ; and

∗ supp(χ) ⊂ D.

Finally, define the continuous family of functions {Ft : t ∈ [0, 1]} ⊂ C1
C(C2) by the equation

Ft(z, w) := (1− t)χ(z, w)
∂Φ̃

∂z̄
(z) ∀(z, w) ∈ C2.

Consider the family of PDE’s:

∂ft
∂z̄

(z) = Ft(z, ft(z)) (ft ∈ E). (4.6)

Here, E is as in the proof of Proposition 4.2. Note that

supp(Fs) = supp(Ft) ∀s, t ∈ [0, 1].
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Thus by Proposition 4.2, (4.6) admits a unique solution in E for each t ∈ [0, 1] and these

solutions vary continuously (w.r.t. the sup norm). By uniqueness (in E),

f0 = Φ̃, and (4.7)

f1 = 0. (4.8)

Now, let X := D(0; 1 + 2ε)×C and D := Ω∩X. Note, by construction that D ⊂⊂ D. Define

Ψ : D× [0, 1]→ X by

Ψ(ζ, t) :=
(
(1 + 2ε)ζ, ft((1 + 2ε)ζ)

)
.

It is clear that Ψ(D× {t}) = graph
(
ft
∣∣
D(0;1+2ε)

)
, i.e., these are submanifolds of X; and that

Ψ is continuous. Lastly, pick a (z0, w0) in X \D such that (z0, w0) lies on Ψ(D×{t}) for some

t. ∃δ > 0 such that B
(
(z0, w0); δ

)
⊂ X \D. Let

ω := πz
(
B
(
(z0, w0); δ

)
∩Ψ(D× {t})

)
,

where πz := the projection onto the z-axis. Note that

ξ ∈ ω ⇒ ∂ft
∂z̄

(ξ) = (1− t)χ(ξ, ft(ξ))
∂Ψ̃

∂z̄
(ξ) = 0.

Since B
(
(z0, w0); δ

)
∩Ψ(D× {t}) = graph(ft) ∩B

(
(z0, w0); δ

)
, we have thus shown that:

ψt 6= 0⇒ ψt is a complex-analytic submanifold of X \D (4.9)

where ψt := Ψ(D× {t}) \D. In other words, all the requirements of the Chirka-Stout Konti-

nuitätsatz are met (with D playing the role of Ω in Theorem 4.6). So, if (D̃, π) denotes the

envelope of holomorphy of D, then owing to (4.7)–(4.9),

[ψ1 ∪ (D ∩ {w = 0})] ∪ Ann(0; 1− 2ε, 1 + 2ε)×D(0; 1) ⊂ π(D̃).

Since π(D̃) is an open set, ∃r > 0 small enough, such that the Hartogs figure

H :=
(
D(0; 1)×D(0; r)

)
∪
(
Ann(0; 1− 2ε, 1 + 2ε)×D(0; 1)

)
⊂ π(D̃). (4.10)

Now, note that f ∈ O(Ω) ⇒ f
∣∣
D
∈ O(D), whence every f ∈ O(Ω) extends to D̃, i.e., (D̃, π)

is and O(Ω)-extension of Ω. Thus, there exists an analytic u : D̃ → Ω̃ such that π = p ◦ u.

Now,

p(Ω̃) ⊇ p ◦ u(D̃) = π(D̃)).

Hence, in view of (4.10), p(Ω̃) contains the Hartogs figure H.
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In a widely circulated preprint of Chirka’s theorem, the conclusion of Theorem 4.1 was

stated thus, “ If f ∈ O(Ω), then f extends holomorphically to D2.” (Compare with The-

orem 1.7). However, this stronger conclusion was found not to be supported by Chirka’s

arguments. Intuitively: when two complex-analytic sets ψs and ψt, s 6= t (in the notation

of the above theorem) intersect at a point — which is not ruled out by Chirka’s methods —

multi-valuedness of the attempted extension of f can result.

In [5], Chirka also asks if Theorem 4.1 is valid in the multidimensional case — i.e., when

Φ :=
(
Φ1, ...,Φn

)
is a continuous Dn−valued map with n > 1. Rosay [14] showed that the

theorem fails, in general, for higher dimensions. Thereafter, several attempts were made to

address Chirka’s question for vector-valued maps with component functions belonging to a

proper sub-class of C(D;C). In Chapters 6 and 7, we describe the underlying techniques of

some successful attempts in this direction.
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5. Merker and Porten’s Proof of the Hartogs

Extension Theorem

In this chapter, we move away from Hartogs-Chirka type of configurations to examine another

well-known result by Hartogs which states that all holomorphic functions in a connected

neighbourhood V(∂Ω) of ∂Ω b Cn, n ≥ 2, extend holomorphically and uniquely to the

domain Ω. Recall that we have already seen a proof of this in Chapter 1 (Theorem 1.5).

Often, analytic-continuation results rely on some variation of the method of analytic discs

— a technique for achieving analytic continuation of a holomorphic function f ∈ O(Ω1) to

a larger domain Ω2, that involves extending the function along continuously varying analytic

discs/varieties which eventually fill up Ω2 but remain attached to Ω1 along their borders.

However, the standard proof of Theorem 1.5 that we saw in Chapter 1 uses no such ideas.

The main challenge in rigorously proving this result using merely the tool of analytic discs lies

in establishing the single-valuedness of the extension. Understanding this is our motivation

to revisit the Hartogs phenomenon described above. In their paper [11], Merker and Porten

successfully tame the issue of multisheetedness by using the method of analytic discs for

local extensional steps and some Morse-theoretic tools for the global topological control of

monodromy. Several details of their proof are technical and elaborate, and hence, cannot be

presented here. But, we would like to present a broad outline of their ideas. We first state

the extension theorem.

Theorem 5.1. Let Ω b Cn be a bounded domain having connected boundary. If n ≥ 2, every

function holomorphic in some connected open neighbourhood V(∂Ω) of ∂Ω extends holomor-

phically and uniquely inside Ω, i.e.,

∀f ∈ O(V(∂Ω)), ∃ a unique F ∈ O(Ω ∪ V(∂Ω)) such that F
∣∣
V(∂Ω)

≡ f.

An outline of Merker and Porten’s proof

Some remarks on the notation used in this proof:

(i) For any given E ⊂ Cn, E>r will denote the set E ∩ {z : ||z|| > r}. In some places, the

subscript “> r” is used for objects E which are not globally defined. In those cases, the

relevance of “> r” will be contextually clear. For instance, for a given hypersurface M ,
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M>r := M∩{z : ||z|| > r}, while the components of M>r are labeled as M c
>r, 1 ≤ c ≤ cλ.

M c, however, is not globally defined.

(ii) The domains bound by M c
>r and {z : ||z|| = r} are denoted by Ω̃c

>r. Here, the tilde

notation indicates that Ω̃c
>r may not be contained in the the domain ΩM bound by M .

(iii) For any subset E ⊂ Cn and δ > 0, Vδ(E) := ∪p∈EBn(p, δ) denotes the tubular neigh-

bourhood of E with cross-sectional radius δ.

• Step 1 : We perturb ∂Ω to a C∞−smooth connected oriented hypersurface M b V(∂Ω) for

which the restriction to M of the Euclidean-norm function z 7→ ||z|| is a Morse function with

only finitely many non-degenerate critical points p̂λ ∈M, 1 ≤ λ ≤ κ, with ||p̂1|| < · · · < ||p̂κ||.
If V(∂Ω) is a thin tubular neighbourhood Vδ(M) contained in V(∂Ω), with cross-section

0 < δ � 1, then V(∂Ω) and Ω in Theorem 5.1 can be replaced by V(∂Ω) and ΩM := the

domain enclosed by M , repsectively.

• Step 2 : Let r̂λ := ||p̂λ||. For any arbitrary fixed radius r with r̂λ < r < r̂λ+1, and some

fixed λ with 1 ≤ λ ≤ κ − 1, consider all the connected components M c
>r, 1 ≤ c ≤ cλ, of

the cut-out hypersurface M ∩ {||z|| > r}. Their number cλ is the same for all r ∈ (r̂λ, r̂λ+1).

We show that each connected hypersurface M c
>r ⊂ {z : ||z|| > r} bounds a certain domain

Ω̃c
>r ⊂ {z : ||z|| > r} where

Ω̃c
>r := the domain bound by M c

>r and {z : ||z|| = r} that is relatively compact in Cn.

One subtlety: to retain connectedness, we must consider a slightly modified neighbourhood

Vδ(M>r)>r of M>r instead of considering the neighbourhood Vδ(M) ∩ {z : ||z|| > r} of M>r

(we will elaborate on this later in this chapter).

• Step 3 : Now consider a modification of the Hartogs figure, called the Levi-Hartogs figure,

defined as follows:

LHε1,ε2 :=

{
max

1≤i≤n−1
|zi| < ε1, |xn| < ε1, −ε2 < yn < 0

}
⋃{

ε1 − (ε1)2 < max
1≤i≤n−1

|zi| < ε1, |xn| < ε1, |yn| < ε2

}
.

By computing the Cauchy integral on appropriate analytic discs whose boundaries remain

in LHε1,ε2 , we conclude that holomorphic functions in this (bed-like) figure extend holomor-

phically to the full parallelopiped

L̂Hε1,ε2 :=

{
max

1≤i≤n−1
|zi| < ε1, |xn| < ε1, |yn| < ε2

}
.

The Levi-Hartogs figure is used to produce holomorphic extension from cut-out domains
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{z : ||z|| > r} ∩ ΩM such that the radius r can be reduced by a uniform amount after which

the same procedure is repeated. In other words, we can deduce analytic continuation to ΩM

by induction.

• Step 4 : To handle the phenomenon of multivaluedness effectively, we need to deal with the

components M c
>r, 1 ≤ c ≤ cλ, separately. The following proposition talks about analytic

continuation in Ω̃c
>r.

Proposition 5.2. Fix a radius r satisfying r̂λ < r < r̂λ+1, for some λ with 1 ≤ λ ≤ κ − 1.

Then, for each c = 1, ..., cλ, and for each function holomorphic in Vδ(M>r)>r, its restriction

to a neighbourhood Vδ(M c
>r)>r of M c

>r extends holomorphically and uniquely to Ω̃c
>r by means

of a finite number of Levi-Hartogs figures.

Main ideas in the Proof: For filling the top of the domain ΩM— i.e., for λ = κ − 1 — we

observe that the single component Ω̃>r =: Ω>r, r ∈ (r̂κ−1, r̂κ), is diffeomorphic to a cut-out

piece of the ball. Placing Levi-Hartogs figures successively (as we shall see later), we can

descend from r to r − η (as long as r − η > r̂κ−1) for some uniform η with 0 < η � 1 that

depends on the dimension n ≥ 2, on δ and on the diameter of Ω.

For descending below r̂κ−1, we need an inductive procedure that helps us

A: fill the domains through intervals of the form (r′, r′′) such that r̂λ < r′ < r′′ < r̂λ+1,

λ = 1, ..., κ− 2; and

B: jump across singular radii.

For A, we can show that certain advantageous topological properties hold for every one of

the cut-out domains associated to (r′, r′′). For instance, the region bounded by the hyper-

surface M and any two spheres of radii r′ and r′′, with r′, r′′ ∈ (r̂λ, r̂λ+1), is diffeomorphic

to a finite union of tube-like domains. Placing Levi-Hartogs figures successively yields holo-

morphic extension along these tube-like domains. Another important property is that two

different domains Ω̃cl
>r and Ω̃ck

>r are either disjoint or one is contained in the other. Con-

sequently, multivaluedness will occur only if Ω̃cl
>r ⊂ Ω̃ck

>r (or vice-versa) and two uniquely

defined holomorphic extensions f clr to Ω̃cl
>r and f ckr to Ω̃ck

>r differ on Ω̃cl
>r.

Accomplishing B proves to be more complicated as, unlike in the case A, the collection

of domains Ω̃c
>r may undergo significant topological changes. Owing to the nature of Morse

functions, three different topological processes may occur:

i. creation of a new component Ω̃c′
>r−η;

ii. merger of two components Ω̃c1
>r and Ω̃c2

>r into Ω̃c′
>r−η; and

iii. disappearance of some component Ω̃c
>r with the property Ω̃c

>r * ΩM .
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FIGURE 1 Creation, merger and disappearance of components.1

The type of topological change, and hence, the procedure required to analytically continue

the holomorphic function in question depends on the Morse index kλ of the singularity p̂λ.

The proof is further divided into three steps corresponding to the cases kλ = 0 and 2n − 1,

2 ≤ kλ ≤ 2n−2 and kλ = 1. It is in the last case that the question of suppressing the analytic

continuation determined by a disappearing component arises. Merker and Porten devise an

easy, yet efficient, tool to keep track of the components which need to be subtracted to avoid

mulitvaluedness.

• Step 5 : Finally, we apply Proposition 5.2 to the single component Ω̃>r̂1+ε (ε� δ) to obtain

the conclusion of the extension theorem.

Preparation of the boundary and unique extension

In the above outline, the first step — the preparation of a ‘good’ Morse boundary — al-

lows us to control the global topology of the cut-out domains ΩM ∩ {z : ||z|| > r}. We

now describe this construction. Let δ1 > 0 be so small that the tubular neighbourhood

Vδ1(∂Ω) := ∪p∈∂ΩBn(p, δ1) lies entirely in the initial neighbourhood V(∂Ω). Then, choosing a

point p0 ∈ Cn such that dist(p0,Ω) = 3, center the coordinates (z1, ..., zn) at p0. Consider the

function r(z) : z 7→ ||z||. By standard results in Morse theory ([10, Chapter 6, Theorem 1.2]),

we can find a C∞−smooth, connected and oriented hypersurface M ⊂ Vδ1/2(∂Ω) such that

rM(z) := r(z)
∣∣
M

is a Morse function with only finitely many non-degenerate critical points

p̂λ ∈ M, 1 ≤ λ ≤ κ, and M bounds a unique domain ΩM with Ω ⊂ ΩM ∪ V(∂Ω). Moreover,

using transversality arguments, the point p0 can be chosen in such a way that the critical

points of rM lie on different level sets of r, i.e., 2 ≤ rM(p̂1) < · · · < rM(p̂κ). Such an M is

called a good boundary.

1Illustration taken from Merker and Porten [11], Section 1.
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Chapter 5 : Merker and Porten’s Proof of the Hartogs Extension Theorem

We now need to verify that the Hartogs theorem can be reduced to proving a version

involving a good boundary M replacing ∂Ω (and ΩM replacing Ω).

Lemma 5.3. Suppose that for some δ with 0 < δ ≤ δ1/2 so small that Vδ(M) is a thin tubular

neighbourhood of the good boundary M , the Hartogs theorem holds for the pair (ΩM ,Vδ(M)).

Then, the Hartogs extension property holds for the given pair (Ω,V(∂Ω)).

Proof. Let f ∈ O(V(∂Ω)). Then, the restriction of f to Vδ(M) admits an extension Fδ ∈
O(ΩM ∪ Vδ(M)) by hypothesis. As Ω ⊂ ΩM ∪ V(∂Ω), it is enough to show that ΩM ∩ V(∂Ω)

is connected. This is because f and Fδ already coincide in Vδ(M) ∩ ΩM ⊂ V(∂Ω).

Let p, q ∈ ΩM ∩ V(∂Ω). Then, there exists a C∞−smooth curve γ : [0, 1] → V(∂Ω)

connecting p to q. If Image(γ) ⊂ ΩM , we are done. If not, then Image(γ) must cross M .

If Image(γ) meets M , let p′ be the first point on Image(γ) ∩M and let q′ be the last one.

Now, modify γ by joining p′ to q′ by means of a curve µ entirely contained in the connected

hypersurface M . Now pushing µ slightly inside ΩM one gets an appropriate curve running

from p to q inside ΩM ∩V(∂Ω). Thus, ΩM ∩V(∂Ω) is connected. Now to complete the proof,

define the required extension as

F :=

Fδ, in ΩM ∪ Vδ(M),

f, in V(∂Ω).

Here, we would like to remark that several modern approaches to analytic-continuation

problems rely upon making such “admissible” changes to the geometry of the given configura-

tion. Such a move is quite essential when Ω has — unlike the theorems in Chapter 1 — very

few symmetries. We will see instances of this in the following chapters (Chapters 6 and 7).

In view of the above lemma, we must — in order to prove Theorem 5.1 — show that the

pair (ΩM ,Vδ(M)) has the Hartogs extension property.

Global Levi-Hartogs filling from the farthest point

In order to demonstrate Merker and Porten’s method of analytic discs for local analytic

continuation, we will summarize the main ideas that go into filling up the domain (with Levi-

Hartogs figures) from the farthest critical point p̂κ to the next critical point p̂κ−1. This will

also shed some light on the procedure employed to fill up the domain through intervals of the

form (r′, r′′) such that r̂λ < r′ < r′′ < r̂λ+1, λ = 1, ..., κ − 2. The procedure for extending

any f ∈ O(Vδ(M)) to the portion of ΩM lying between two level sets lying on either sides

of a critical level set {z : ||z|| = r̂λ}, λ = 1, .., κ − 1, is very technical, and breaks up into
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several cases. It will not be possible to do justice to this procedure in this report. However,

the procedure for extending f ∈ O
(
Vδ(M)

)
in the portion of ΩM lying above the level set

{z : ||z|| = r̂κ−1} already reveals several key techniques. These are the techniques we shall

discuss.

(i) Preparing the Levi-Hartogs figure: It is first important to understand how the Levi-

Hartogs figure introduced in Step 3 in the above outline of Merker and Porten’s proof

can be used in our situation. We will use the following notation:

• For r ∈ R with r > 1 and δ ∈ R with 0 < δ � 1, let Sr+δr := {r < ||z|| < r + δ}.

• For a R ⊂ S2n−1
r := {z ∈ Cn : ||z|| = r} open in the relative topology of S2n−1

r , we

define the (radial) rind of thickness η > 0 around R as Rind(R, η) := {(1 + s)z :

z ∈ R, |s| < |η|/r}.

• For any subset E ⊂ S2n−1
r and δ ∈ R with 0 < δ � 1, define Shellr+δr (E) :=

∪p∈EBn(p, δ) ∩ {z : ||z|| > r}.

We now observe that, given δ > 0 and p ∈ S2n−1
r , we can find ε1, ε2 and some composition

of a translation and a unitary map, say Φp, that sends the origin to p, the real-tangent

plane T0LHε1,ε2 to the real-tangent plane TpS
2n−1
r and the whole of LHε1,ε2 inside the

shell Sr+δr . Additionally, Φp can be chosen in such a manner that Φp(L̂Hε1,ε2) contains

a rind of thickness c δ
2

r
around some region Rp ⊂ S2n−1

r whose (2n− 1)-dimensional area

only depends on δ. From this fact, we can deduce the following crucial proposition:

Proposition 5.4. Let R ⊂ S2n−1
r (with r > 1 and n ≥ 2) be a relatively open set having

C∞−smooth boundary N = ∂R and let δ ∈ R with 0 < δ � 1. Then, holomorphic

functions in Shellr+δr (R∪N) extend holomorphically to a rind of thickness c δ
2

r
around R

by means of a finite number of Levi-Hartogs figures.

FIGURE 2 Extensions from a pseudoconcave piece of shell.2

2Illustration taken from Merker and Porten [11], Section 3.2.
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Here, one chooses finitely many points p1, ..., pm ∈ R ∪N such that the associated local

regions Rpk contained in the filled Levi-Hartogs figures Φpk(L̂Hε1,ε2) cover R∪N . Then,

one extends the function on each Levi-Hartogs figure separately and patches up the

functions thus obtained into a single holomorphic function by establishing connectedness

of relevant intersections of open sets.

(ii) The geometry of the cut-out hypersurface M>r, r ∈ (r̂κ−1, r̂κ): By assumption, the

real-Hessian matrix of rM is nondegenerate at p̂κ and the tangency of ∂Bn(0, r̂κ) to

M = ∂ΩM at p̂κ forces strong convexity of M at p̂κ. Basic Morse theory shows that

M>r is a deformed spherical cap diffeomorphic to R2n−1 for every r ∈ (r̂κ−1, r̂κ). Also,

Ω>r = ΩM ∩ {z : ||z|| > r} is then a piece of deformed ball diffeomorphic to R2n. The

boundary in Cn of Ω>r

∂Ω>r = M>r ∪Rr ∪Nr

consists of M>r together with the open subregion Rr := ΩM ∩{||z|| = r} of S2n−1
r which

is diffeomorphic to R2n−1 and has boundary Nr := M ∩ {||z|| = r} diffeomorphic to the

unit (2n− 2)-sphere.

(iii) Choosing the neighbourhood Vδ(M>r)>r: One might naively wish to consider the open

set Vδ(M)>r. However, when r > r̂κ−1 is very close to r̂κ−1, a connected component

W>r of Vδ(M)>r might appear above {r = r̂κ−1} (as seen in the diagram below). After

filling Ω>r progressively, by means of Levi-Hartogs figures, because Ω>r ∩ Vδ(M)>r is

not connected — the extension of f thus created will not, in general, agree with f
∣∣
W>r

.

FIGURE 3 Occurence of problematic components.3

3Illustration taken from Merker and Porten [11], Section 4.1.
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To erase such problematic components W>r, we will consider the open set

Vδ(M>r)>r = Vδ(M>r) ∩ {z : ||z|| > r} .

This open set is always diffeomorphic to M>r × (−δ, δ).

(iv) Choosing η: For the rinds appearing in Propisition 5.4, we use the smallest appearing

thickness

η :=
cδ2

r̂κ
,

and, if required, further shrink η to ensure that η � δ. It is important to note that, given

the hypotheses of Proposition 5.4, the conclusion of the proposition can be obtained for

any rind around R of thickness less than cδ2/r.

(v) Filling up Ω>r using shells : To prove Proposition 5.2 for λ = κ − 1, fix a radius r ∈
(r̂κ−1, r̂κ). By placing a single Levi-Hartogs figure at p̂κ, we get unique holomorphic

extension to Ω>r̂κ−η. As η � δ, r̂κ − η > r̂κ−1. If the radius r̂κ − η < r, then shrinking

the rind, we get a unique extension to Ω>r. If not, then performing induction on an

auxiliary integer k ≥ 1, we suppose that, by descending from r̂κ to a lower radius

r′ := r̂κ − kη ≥ r, holomorphic functions in Vδ(M>r)>r extend uniquely to Ω>r′ . Now,

we wish to descend further to Ω>r′−η. In view of Proposition 5.4, we are required to

show that, for every radius r′ with r̂κ−1 < r < r′ < r̂κ,

• Shellr
′+δ
r′ (Rr′ ∪Nr′) ⊂ Ω>r′ ∪ Vδ(M>r)>r;

• Rind(Rr′ , η)
⋃

(Ω>r′ ∪ Vδ(M>r)>r) ⊃ Ω>r′−η ∪ Vδ(M>r)>r; and

• Rind(Rr′ , η)
⋂

(Ω>r′ ∪ Vδ(M>r)>r) is connected.

The first claim allows us to extend the function fr′ (the unique extension to Ωr′ whose

existence is guaranteed by our induction hypothesis) to Rind(Rr′ , η). The second claim

helps us construct a potential candidate for the extension function to Ω>r′−η, and the

third claim ensures that this candidate is indeed an extension. The proofs of these steps

are extremely geometric in nature and Merker and Porten often resort to pictures for the

proofs. The third claim involves decomposing the rind into three parts, each of which

is dealt with separately. Although we will not go into the details of the proof, we would

like to point out that the ideas heavily depend on our understanding of the geometry of

the hypersurface M and the cut-out domains Ω>r, r ∈ (r̂κ−1, r̂κ).

Finally, by induction, we can conclude that ∃k0 ∈ N such that r̂κ − (k0 − 1)η > r,

r̂κ−1 < r̂κ − k0η ≤ r and that we get a unique holomorphic extension to Ω>r̂κ−k0η. If

r′−k0η < r, then we shrink the thickness of the final extensional rind to obtain a unique

and holomorphic extension to Ω>r, as required.
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6. A Generalization of Chirka’s Extension

Theorem

We now return to Hartogs-Chirka type of configurations to explore the validity of Chirka’s

extension theorem (Chapter 4, Theorem 4.1) in higher dimensions. Recall that in Chapter

4, we mentioned that Rosay’s counterexample in [14] gave a negative answer to Chirka’s

question
(
[5, Question 1], also see Chapter 4

)
. In this chapter, we present Bharali’s ([2]) first

generalization of Chirka’s extension theorem to higher dimensions:

Theorem 6.1 (Bharali, [2]). Let Γ be the graph of the map φ = (φ1, ..., φn) : D→ Cn, where

for each φk, k = 1, ..., n,

φk ∈

[{
z 7→ ψ(z, z) : ψ ∈ O(D2) and sup

(z,ζ)∈D2

|ψ(z, ζ)| < 1

}
∩ C(D;D)

]
. (6.1)

If Ω is a connected neighbourhood of S := Γ∪
(
∂D×Dn

)
such that Ω∩Dn+1 is connected and

if f ∈ O(Ω), then f extends holomorphically to Dn+1.

We first consider the following lemma — a special case of Theorem 6.1 — which is not

only crucial to the proof of Theorem 6.1, but also illustrates a powerful technique often used

in analytic-continuation problems. The kind of construction seen in the proof of this lemma

will be repeated more than once in the final chapter of this report.

Lemma 6.2. Let Γ be the graph of the function φ(z) := z over D. Let Ω be a neighbourhood

of Γ ∪ (∂D× D) such that Ω ∩ D2 is connected. If f ∈ O(Ω), then f extends holomorphically

to a neighbourhood of D2.

Proof. Consider the smooth family of analytic discs {At}t∈[−1,1]:

At(z) := (z, 2t− z), z ∈ D.

Notice that At(D) ∩ Γ = {(t+ iy, t− iy) : y ∈ [−
√

1− t2,
√

1− t2]}.

Consider the case when t ≥ 0. If t ≤ x ≤ 1 and x2 + y2 ≤ 1, then |2t− (x+ iy)| ≤ 1. Thus,

the sets

S+
t :=

{
At(x+ iy) : t < x < 1, x2 + y2 < 1

}
, t ∈ [0, 1),
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are analytic discs with boundaries in Ω, and S+
t ⊂ Ω for t close to 1. By the Kontinuitätssatz,

f extends holomorphically to a neighbourhood of {(z = x + iy,−z) ∈ C2 : 0 ≤ x ≤ 1, |z| ≤
1}(= S+

0 ).

Similarly, by considering the sets

S−t :=
{
At(x+ iy) : −1 < x < t, x2 + y2 < 1

}
, t ∈ (−1, 0],

we can show that f extends holomorphically to a neighbourhood of the graph of the holo-

morphic function ψ(z) = −z. Call this function f̃ . Now we can evoke the classical Hartogs

theorem (i.e., Theorem 3.1) to conclude that f̃ extends holomorphically to D2.

We now proceed to prove the main theorem. Note that the class of graphs described in

Theorem 6.1 is such that the ‘Γ-component’ of S may , in general, be entirely devoid of

symmetry. We will first make — just as in the proof of Theorem 5.1 — admissible changes to

the configuration S so that it suffices to prove Theorem 6.1 for φk belonging to some easier-to-

work-with class of graphs. Thereafter, the conjugate variable z is treated as an independent

variable ξ.

Proof of Theorem 6.1. Let φ : z 7→ (ψ1(z, z), ..., ψn(z, z)) be a map belonging to the class

described in (6.1) above. We then choose an ε > 0 such that Ann(0; 1− 2ε, 1 + 2ε)×Dn ⊂ Ω.

It is easy to see that it suffices to work with the Hartogs configuration graph
(
φ
∣∣
D(0;1−ε)

)
∪(

∂D(0; 1− ε)× Dn
)
. But then, we have the very useful property:

(z, ξ) 7→ (ψ1(z, ξ), ..., ψn(z, ξ)) is continuous on D(0; 1− ε)
2
.

Therefore, it actually suffices to prove Theorem 6.1 under the assumption that for each φk,

k = 1, ..., n,

φk ∈

{
z 7→ ψ(z, z) : ψ ∈ O(D2) ∩ C(D2

) and sup
(z,ζ)∈D2

|ψ(z, ζ)| < 1

}
. (6.2)

Moreover, we can let ψk, k = 1, ..., n, be polynomials Pk(z, ζ) =
N∑
|α|=0

C
(k)
α zα1ζα2 , with

sup
(z,ζ)∈D2 |P (z, ζ)| < 1. This is beacuse ψk can now be approximated arbitrarily closely

by such polynomials on the whole of D2
. Hence, we will now assume that φk, k = 1, ..., n are

polynomials φk(z) = Pk(z, z) with the property sup
(z,ζ)∈D2 |Pk(z, ζ)| < 1.

Let δ > 0 be so small that

i) sup
(z,ζ)∈D(0;1+δ)

2 |Pk(z, ζ)| < 1;

ii) {(z, w1, ..., wn) ∈ Cn+1 : |z| < 1, |wk − Pk(z, z)| < δ; k = 1, ..., n} ⊂ Ω; and
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iii) Ann(0; 1− δ + 1 + δ)× Dn ⊂ Ω.

There exists an ε0 ∈ (0, δ/2) so small that for |wk| < ε0, k = 1, ..., n,

• |{wk + Pk(z, ξ)} − Pk(z, z)| < δ ∀(z, ξ) ∈ D× C such that |ξ − z| < ε0; and

• |wk + Pk(z, ξ)| < 1 ∀(z, ξ) ∈ Ann(0; 1− δ, 1 + δ)×D(0; 1 + δ).

Therefore, for each w ∈ D(0; ε0)n

(z, ξ) 7→ H(z, ξ, w) := f
(
z, w1 + P1(z, ξ), ..., wn + Pn(z, ξ)

)
(6.3)

is well-defined and holomorphic in {(z, ξ) : |z| < 1, |ξ − z| < ε0} ∪ (Ann(0; 1 − δ, 1 + δ) ×
D(0; 1 + δ)) ⊂ C2. Hence, by Lemma 6.2, we can define a function H̃, such that for each

w ∈ D(0; ε0)n,

(z, ξ) 7→ H̃(z, ξ, w)

is a holomorphic extension of the function given by (6.3) to a neighbourhood of D2.

Now, observe that for any (z0, ξ0) ∈ D2 and µ ∈
(
|ξ0|, 1

)
,

H̃(z0, ξ0, w) =
1

(2πi)2

∫
|z|=1

∫
|ξ|=µ

H̃(z, ξ, w)

(z − z0)(ξ − ξ0)
dξdz

=
1

(2πi)2

∫
|z|=1

∫
|ξ|=µ

H(z, ξ, w)

(z − z0)(ξ − ξ0)
dξdz

for w ∈ D(0; ε0)n. Thus, the analyticity of the family
{
H(·, ·, w)

}
|wk|<ε0

forces
{
H̃(·, ·, w)

}
|wk|<ε0

to be an analytic family. We now have that

(z, ξ, w) 7→ H̃(z, ξ, w1 − P1(z, ξ), ..., wn − Pn(z, ξ))

is holomorphic in {(z, ξ, w) : |z| < 1, |ξ| < 1, |wk − Pk(z, ξ)| < ε0}.

Define

f̃(z, w) := H̃(z, 0, w1 − P1(z, 0), ..., wn − Pn(z, 0)).

f̃ is defined and holomorphic in {(z, w) : |z| < 1, |wk − Pk(z, 0)| < ε0}. Since, for

z ∈ Ann(0; 1−δ, 1+δ), H̃(z, 0, w1−P1(z, 0), ..., wn−Pn(z, 0)) = H(z, 0, w1−P1(z, 0), ..., wn−
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Pn(z, 0)), we have

f̃(z, w1, ..., wn) = H̃(z, 0, w1 − P1(z, 0), ..., wn − Pn(z, 0))

= H(z, 0, w1 − P1(z, 0), ..., wn − Pn(z, 0))

= f(z, w1, ..., wn) [by (6.3)]

in Rδ := {(z, w) : z ∈ Ann(0; 1 − δ, 1 + δ), |wk − Pk(z, 0)| < ε0}. So, f̃
∣∣
Rδ
≡ f

∣∣
Rδ

. This

allows us to define f̃ as a holomorphic function on Aδ := Ann(0; 1− δ, 1 + δ)×Dn by simply

setting f̃
∣∣
Aδ

= f
∣∣
Aδ

. We, therefore, conclude that f̃ is holomorphic in a neighbourhood of

σ ∪ (∂D × Dn) — σ being the graph of the holomorphic map z 7→ (P1(z, 0), ..., Pn(z, 0)) over

D. By the classical theorem of Hartogs, f̃ extends to F ∈ O(Dn+1) and F
∣∣
Rδ
≡ f

∣∣
Rδ

. Rδ

being an open subset of Ω, F is the required holomorphic extension.

Although a valid generalization of Chirka’s extension theorem, Theorem 6.1 deals with a

subclass of C(D;Dn) that is quite restrictive. We observed that, by changing the scheme of

choosing analytic discs in the proof of Lemma 6.2, we could prove this theorem for a less

restrictive class. We talk about this in the next chapter. We will also see another subclass of

C(D;Dn) for which such a theorem has been obtained by Barrett and Bharali ([1]).

38



7. Two Extension Theorems of Hartogs-Chirka

Type Involving Continuous Multifunctions

Introduction and statement of results

This chapter is motivated by a version of Hartogs’ lemma that says that if Ω is some neigh-

bourhood of the union of ∂D × D and a complex analytic subvariety Σ ⊂ D × D that is

finitely-sheeted over D (such that Ω∩D2 is connected), and f ∈ O(Ω), then f continues holo-

morphically to D2; and by the Hartogs-type extension theorem of Chirka (Chapter 4, Theorem

4.1). One is motivated to ask whether, given the following “Weierstrass pseudopolynomial”

Pa(z, w) := wk +
k−1∑
j=0

aj(z)wj, k ≥ 2, (7.1)

where a0, ..., ak−1 ∈ C(D), with P−1
a {0} ⊂ D×D, and a neighbourhood Ω of P−1

a {0}∪
(
∂D×D

)
,

the conclusion of the aforementioned theorems can be inferred in this new setting.

One possible approach to this question is suggested by the Kontinuitätssatz-based strategies

of Bharali [2] and Barrett-Bharali [1], provided one is willing to allow (a0, ..., ak−1) in (7.1) to

belong to some strict subclass of C(D;Ck). To motivate the origins of the two main theorems

below, let us recall the result from [2] that we saw in the previous chapter.

Result 7.1 (Bharali, [2]). Let Γ be the graph of the map (φ1, ..., φk) : D→ Ck, each φj(z) :=

ψj(z, z), where, for j = 1, ..., k,

ψj ∈

{
ψ ∈ O(D2) : sup

(z,ζ)∈D2

|ψ(z, ζ)| < 1 and z 7→ ψ(z, z) is continuous on D

}
. (7.2)

If Ω is a connected neighbourhood of S := Γ ∪ (∂D × Dk) contained in

{(z, w) ∈ C× Ck : w ∈ Dk} and if f ∈ O(Ω), then f extends holomorphically to Dk+1.

In the theorems in [1] and [2], the authors construct a continuous family of discs{
Φt ∈ C(D;Ck) : t ∈ [0, 1]

}
such that Φ0 = (φ1, ..., φk) and each Φt is holomorphic on larger

and larger sub-regions of D so that, eventually, Φ1 ∈ O(D)∩C(D). This suggests the following

strategy:
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• Step 1. Setting (φ1, ..., φk) := (a0, ..., ak−1), we can try to construct a continuous family

of discs {Φt}t∈[0,1] with the properties mentioned above. We can then treat each Φt :=

(Φt,0, ...,Φt,k−1) as a k-tuple of the ordered coefficients of a Weierstrass pseudopolyno-

mial, to obtain a continuous family of “pseudovarieties”{
Σt :=

{
(z, w) ∈ D× C : wk +

∑k−1
j=0 Φt,j(z)wj = 0

}}
t∈[0,1]

such that Σ0 := {(z, w) ∈

D× C : Pa(z, w) = 0}, each Σt is a finitely-sheeted complex analytic subvariety fibered

over larger and larger sub-regions of D, and Σ1 is the graph of an analytic multifunction

(i.e., a multigraph) over D.

• Step 2. In the above construction, our hypotheses on (a0, ..., ak−1) must also ensure

that each Σt over D, like the initial “pseudovariety”, lies within the bidisc, i.e., Σt ⊂
D× D ∀t ∈ [0, 1], and that Σt is attached to ∂D× D along the border of Σt ∀t ∈ [0, 1].

• Step 3. Finally, we invoke a suitable version of the Kontinuitätssatz to achieve analytic

continuation along the family constructed above so as to reduce the problem to the

finitely-sheeted-analytic-variety version of Hartogs’ lemma mentioned in the beginning

of this section.

It turns out that this second strategy is successful (with some refinement) if the coefficients

a0, ..., ak−1 are drawn from the subclasses studied in [1] and [2]. The results presented below

are contained in the article [8]. The first theorem is stated for a0, ..., ak−1 belonging to the

subclass of C(D) introduced by Barrett and Bharali in [1].

Theorem 7.2. Let a0, ..., ak−1 ∈ C(D;C) be such that the set

Σa :=

{
(z, w) ∈ D× C : wk +

k−1∑
j=0

aj(z)wj = 0

}

lies entirely in D × D. For 0 < r ≤ 1, let A
j

ν(r) represent the νth Fourier coefficient of

aj(re
i·), ν ∈ Z. Assume that A

j

ν ≡ 0 ∀ν < 0 and j = 0, ..., k − 1. Let Ω be a connected

neighbourhood of S := Σa∪(∂D×D) such that Ω∩D2 is connected. Then, for every f ∈ O(Ω),

∃F ∈ O(D2) such that

F
∣∣
Ω∩D2 ≡ f

∣∣
Ω∩D2 .

Our next theorem has its origins in Result 7.1, but see Remarks 7.1 and 7.2 below.

Theorem 7.3. Let aj := ψj(z, z), where

ψj ∈

{
ψ ∈ O(D2) : sup

(ζ,s)∈D×[0,1]

|ψ(ζ, sζ)| < 1and z 7→ ψ(z, z) is continuous on D

}
(7.3)
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for j = 0, ..., k − 1, be such that the set

Σa :=

{
(z, w) ∈ D× C : wk +

k−1∑
j=0

aj(z)wj = 0

}

lies entirely in D×D(0; 2). Let Ω be a connected neighbourhood of S := Σa ∪ (∂D×D(0; 2))

such that Ω ∩
(
D × D(0; 2)

)
is connected. Then, for every f ∈ O(Ω), ∃F ∈ O(D × D(0; 2))

such that

F
∣∣
Ω∩
(
D×D(0;2)

) ≡ f
∣∣
Ω∩
(
D×D(0;2)

).
Remark 7.1. Let F1 and F2 be the classes of functions appearing in (7.2) and (7.3) respectively.

In Chapter 6, we pointed out that the class F1 is quite restrictive. While adapting the approach

outlined above, we found that we could construct the deformation {Φt : t ∈ [0, 1]} in a slightly

different fashion from what is suggested in [2], which allows us to work with a0, ..., ak−1 be-

longing to a less restrictive class. Note that F2 ! F1; simply observe that if ψ(z, w) :=

(M + ε)−1exp(z − w − 2), where M = sup(ζ,s)∈D×[0,1] | exp(ζ − sζ − 2)|, then M < 1 and for

ε ∈ (M, 1), ψ ∈ F2 but ψ /∈ F1.

Remark 7.2. Unbeknownst to me, Černe and Flores [4] have independently used the three-step

method summarized earlier to prove:

(∗) Let a0, ..., ak−1 be continuous functions on D and let

Σa := {(z, w) ∈ D× C : wk + ak−1(z)wk−1 + · · ·+ a0(z) = 0}

be a continuous variety over D. Then, every function holomorphic in a connected neigh-

bourhood of the set S = Σa ∪ (∂D × C) extends holomorphically to a neighbourhood of

D× C.

Note that C(D;D) is a subset of the uniform closure (on D) of the function space obtained if

we drop the bound “sup(z,ζ)∈D2 |ψ(z, ζ)| < 1” from F1. It is this, coupled with their reliance on

the three-step method outlined above, that compels Černe-Flores to work with the unbounded

cylinder D × C. Theorem 7.3 represents an alternative setting in which to exploit the same

method with — in contrast to Černe-Flores [4] — the following initial objectives:

I to use the ideas of Barrett and Bharali to demonstrate an analytic-continuation theorem

stated for a compact Hartogs figure (S = Σa ∪
(
∂D×D(0; 2)

)
in our case); and

I to extend the applicability of Result 7.1 to a less restrictive class of graphs/coefficients,

namely F2.
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Due to considerations inherent to the three-step method we intend to use — see Remark 7.4(i)

below — we, just like Černe-Flores, cannot work with the Hartogs configuration Σa∪(∂D×D)

either. However, we can state a result involving Σa ∪ (∂D×D(0; 2)).

We refer to several lemmas from Barrett-Bharali [1] during the course of this chapter. For

the sake of convenience, we first provide the statements of the relevant lemmas from [1].

Useful lemmas from Barrett-Bharali [1]

Lemma 7.4. Let G(reiθ) =
∑N

n=0 bn(r)einθ — i.e., we assume that G(rei·) ∀r ∈ (0, 1] has no

negative Fourier modes. Assume further that G ∈ C∞(D;C). Then, the holomorphic function

Dr(ζ) =
N∑
n=0

bn(r)

(
ζ

r

)n
, ζ ∈ D(0; r),

which belongs to O[D(0; r)] ∩ C[D(0; r)], satisfies Dr(reiθ) = G(reiθ) ∀θ[0, 2π). Fix ν ∈ N
and let K b D(0; 1− 1/ν) be a compact subset. The function (r, ζ) 7→ Dr(ζ) is a continuous

function on [1− 1/ν, 1]×K.

Lemma 7.5. Let G be as in Lemma 7.4. Then,

• {Dr}r∈(0,1) is a continuous family in the sense that for a fixed ζ0 ∈ D, r 7→ Dr(ζ0) is

continuous in the interval (|ζ0|, 1).

• limr→1− Dr(ζ) exists for each ζ ∈ D, and this limit defines a holomorphic function

ψ ∈ O(D).

Lemma 7.6. Let F ∈ C(D;C). Assume that F (rei·) ∀r ∈ (0, 1] has no negative Fourier

modes. Then, given ε > 0 there exists a function G ∈ C∞(D;C) of the form

G(reiθ) =
N∑
n=0

Bn(r)einθ,

where N is some large positive integer and Bn ∈ C∞([0, 1];C), such that |F (ζ) − G(ζ)| < ε

∀ζ ∈ D.

Remark. In [1], Lemma 7.6 is stated with the condition sup∂D |F | < 1 among the hypotheses.

This condition is not needed to obtain the conclusion above, but to derive other conclusions

that are needed in [1], but not in the present chapter. Thus, we have suppressed the condition

sup∂D |F | < 1 and its associated conclusions in our version of Lemma 7.6.

Many of the mathematical details underlying Step 2 and 3 are common to Theorems 7.2 and

7.3. We now present these technicalities.
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Preliminary Lemmas

The following notation will be used:

• C∞(D;C) will denote the class of infinitely differentiable functions on the unit disc, all

of whose derivatives extend to functions in C(D);

• for α := (α0, ..., αk−1) ∈ C(G;Ck), k ∈ N, G ⊂ C a bounded domain, and E ⊂ G

Pα(z, w) := wk +
k−1∑
j=0

αj(z)wj,

Σα,E :=

{
(z, w) ∈ E × C : wk +

k−1∑
j=0

αj(z)wj = 0

}
,

and, for the sake of convenience, the subscript E shall be dropped when E = D, i.e.,

Σα,D =: Σα.

The first step of the three-step strategy outlined in the first section is not difficult, but the

details involved are theorem-specific. This is, in part, due to the requirements described in

Step 2. The task of determining sufficient, yet not too strong, conditions on the coefficient

k-tuple (a0, ..., ak−1) that will enable us to establish that each Σt, t ∈ [0, 1], is contained in

the bidisc relevant to each theorem is a crucial one. The following lemma — a maximum

principle for varieties — will prove useful.

Lemma 7.7. Let G ⊂ C be a bounded domain and a ∈ O(G;Ck) ∩ C(G;Ck). Define

M(z) := max
{
|w| : (z, w) ∈ Σa,G

}
.

If M(z) ≤ K ∀z ∈ ∂G, then M(z) ≤ K ∀z ∈ G.

Proof. We would be done if we could obtain the conclusion of this lemma when Σa,G is an

irreducible subvariety. For Σa,G irreducible, if we can show that M is subharmonic, then the

result would follow from the maximum principle.

Recall that the zeros of monic degree-k polynomials over C, viewed as unordered

k-tuples of zeros repeated according to multiplicity, vary continuously with the coefficients.

Hence, as M is symmetric in the zeros of Pa, M ∈ C(G).

Now, let

R(z) := resultant of Pa(z, ·) and ∂wPa(z, ·), z ∈ G.

By the irreducibility of Σa,G, R 6≡ 0. As R ∈ O(G), S := R−1{0} is a discrete set in G.

Now, for any z0 ∈ G \ S, Σa,{z0} = {(z0, w0,1), ..., (z0, w0,k)} with w0,j 6= w0,l for j 6= l. As
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∂wPa(z0, w0,j) 6= 0 for each j = 1, ..., k, we may apply the implicit function theorem at each

point of Σa,{z0} to obtain a common radius r(z0) > 0 such that the k sheets of Σa,D(z0;r(z0)) are

the graphs of functions φz01 , ..., φ
z0
k ∈ O

(
D (z0; r(z0))

)
. Clearly,

M(z) = max
j≤k

∣∣φz0j (z)
∣∣ ∀z ∈ D

(
z0; r(z0)

)
.

Thus, M
∣∣
D(z0;r(z0))

is subharmonic. As z0 was arbitrarily chosen from the open set G \S, we

infer that M
∣∣
G\S is a subharmonic function.

As S is the zero set of a holomorphic function, it is a polar set. But M
∣∣
G\S is a bounded

subharmonic function, and M ∈ C(G). Therefore, M must be subharmonic in G.

Remark 7.3. The following is a paraphrasing of the above lemma that will be used in our

situation.

Let G ⊂ C be a bounded domain and a ∈ O(G;Ck) ∩ C(G;Ck). Then,

Σa,∂G ⊂ ∂G×D(0;K)⇒ Σa,G ⊂ G×D(0;K).

Remark 7.4. We will also need the following algebraic facts:

(i) If α0, ..., αk−1 ∈ D, k ∈ N, and w1, ..., wk are the zeros of the polynomial wk+αk−1w
k−1+

· · ·+ α1w
1 + α0, then wj ∈ D(0; 2), j = 1, ..., k. For an easy proof of this fact, one can

apply Rouché’s theorem to f(w) := wk and g(w) := wk +
∑k−1

j=0 αjw
j on ∂D(0; 2).

(ii) If (α0, ..., αk−1) ∈ Ck, and w1, ..., wk are the zeros of the polynomial wk + αk−1w
k−1 +

· · ·+ α1w + α0, then, for η ∈ C, w1 + η, ..., wk + η are the zeros of the polynomial

wk + α
(η)
k−1w

k−1 + · · ·+ α
(η)
1 w + α

(η)
0 ,

where, for each j,

α
(η)
j = αj +

k∑
l=j+1

(−1)l−j
(

l

l − j

)
αlη

l−j (7.4)

interepreting αk := 1.

Theorems having a similar flavour as Theorems 7.2 and 7.3 have relied upon the Konti-

nuitätssatz. However, the earliest (and partially correct) works do not specify which form of

the “Kontinuitätssatz” they rely upon. We wish, here, to make clear that the version that

works for us is the version of Chirka and Stout [7]. However, merely using the Chirka-Stout

Kontinuitätssatz will yield a conclusion weaker than desired, on the envelope of holomorphy

of the domain in question. The next lemma follows the approach of Barrett and Bharali [1] to
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argue that it is, in fact, possible to obtain the strong conclusion of Chirka’s extension theorem

(i.e. Theorem 4.1) in our situation.

Lemma 7.8. Let a = (a0, ..., ak−1) ∈ C(D;Ck) and Σa ⊂ D × D(0; r), r > 0. Let Ω be

a connected open neighbourhood of S := Σa ∪
(
∂D × D(0; r)

)
and f ∈ O(Ω). Let V :=

Ann(0; 1− ε, 1 + ε), ε > 0, be such that V ×D(0; r) ⊂ Ω, and let D b Ω, be an open subset

containing S. For any α ∈ C(D;Ck) and any η ∈ C, let α(η) ∈ C(D;Ck) denote the perturbation

that is given by (7.4) so that Σα(η) = Σα + (0, η). Suppose there exists a continuous function

A := (A0, ..., Ak−1) : D × [0, 1], and a δ > 0 which is so small that, defining Ση
t := ΣA(η)(·,t),

we have

(i) for each η ∈ D(0; δ), Ση
t ⊂ D×D(0; r) ∀t ∈ [0, 1]; and

(ii) for each η ∈ D(0; δ), Ση
t ∩ (D × D(0; r)) \ D is a complex-analytic subvariety of D ×

D(0; r) \D.

Then, there exists a connected neighbourhood Ω1 of S1 := Σ0
1 ∪

(
∂D × D(0; r)

)
and

f1 ∈ O(Ω1) such that

f1

∣∣
Ω1∩
(
V×D(0;r)

) ≡ f
∣∣
Ω1∩
(
V×D(0;r)

).
Proof. Let

T :=
⋃

η∈D(0;δ)

Σ0
1 + (0, η).

By the Chirka-Stout Kontinuitätssatz [7], T ⊂ π(Ω̃), where (Ω̃, π) denotes the envelope of

holomorphy of Ω.

There is a canonical holomorphic imbedding of Ω into Ω̃. We denote this imbedding by

j : Ω ↪→ Ω̃. Corresponding to each f ∈ O(Ω), there is a holomorphic function E(f) ∈ O(Ω̃)

such that E(f)◦j = f . By [7] (and analogous to the situation in [1]), there exists a holomorphic

mapping (note that Ση
1 varies analytically in η) H : T → Ω̃ such that

π ◦H
(
Ση

1 ∩ ({z} × Cw)
)

= Ση
1 ∩ ({z} × Cw) ∀η ∈ D(0; δ) and z ∈ D.

Now, for each p := (z1, w1) ∈ T ∩
(
V ×D(0; r)

)
, there exist

I an η0 ∈ D(0; δ); and

I a point q ∈ Ση0
0 ∩ {z1} × Cw,
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such that the continuous family {Ση0
t }t∈[0,1] determines a path γqp : [0, 1] → {z1} × Cw with

γqp(0) = q and γqp(1) = p. Let SΩ := the sheaf of O(Ω)-germs over C2 (refer to [13, Chapter

6] for the definition of an O(Ω)-germ) and let

γ̃qp := the lift of γqp to SΩ starting at the germ [g : g ∈ O(Ω)]q.

Examining the Kontinuitätssatz, H(p) = γ̃qp(1).

We know that if [sg : g ∈ O(Ω)]z is an O(Ω)-germ in Ω̃, then

E(f) ([sg : g ∈ O(Ω)]z) = sf (z).

By the monodromy theorem, γ̃qp(1) = [g : g ∈ O(Ω)]p. Hence,

E(f) ◦H(p) = E(f) (γ̃qp(1)) = f(p).

Since the above holds for any arbitrary p ∈ T ∩
(
V × D(0; r)

)
, we see that

E(f) ◦H = f on T ∩
(
V × D(0; r)

)
.

Finally, let Ω1 := T ∪ (V ×D(0; r)) and

f1(z, w) :=

E(f) ◦H(z, w), if (z, w) ∈ T ,

f(z, w), if (z, w) ∈ V ×D(0; r),

Then, f1 ∈ O(Ω1) and

f1

∣∣
Ω1∩
(
V×D(0;r)

) ≡ f
∣∣
Ω1∩
(
V×D(0;r)

).

Proof of Theorem 7.2

By Lemma 7.6 and the continuous dependence of the zeros of a polynomial on its coefficients,

we know that it is enough to prove Theorem 7.2 for a0, ..., ak−1 ∈ G1, where G1  C(D;C) is

the following set:{
g ∈ C∞(D;C) : ∃N ∈ N, Gn ∈ C∞

(
[0, 1];C

)
such that g(reiθ) =

N∑
n=0

Gn(r)einθ, r ∈ (0, 1]

}
.

Thus, we replace a = (a0, ..., ak−1) in Theorem 7.2 by b := (b0, ..., bk−1) ∈ Gk
1. This is because
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we can find a Σb that is so close to Σa that Σb ⊂ Ω and is attached to ∂D× D.

Fix a j ∈ {0, ..., k − 1}. Let

bj(re
iθ) =

n(j)∑
n=0

B
j

n(r)einθ, θ ∈ [0, 2π),

where n(j) ∈ N and B
j

n ∈ C∞
(
[0, 1];C

)
. Using Lemma 7.4 in [1], where Barrett and Bharali

constructed an explicit family of analytic discs in D×C with boundaries in {(z, b0(z), ..., bk−1(z)) :

z ∈ D}, we define a family of continuous discs {Bt = (Bt,0, ...,Bt,k−1)}t∈[0,1] as follows:

Bt,j(ζ) :=


n(j)∑
n=0

B
j

n(t)
(
ζ
t

)n
, if ζ ∈ D(0; t),

bj(ζ), if ζ ∈ Ann(0; t, 1).

(7.5)

Note that B0 = b. Also, by Lemma 7.5 in [1], {Bt}t∈[0,1] is a continuous family, and B1 ∈
O(D;Ck) ∩ C(D;Ck).

Let δ > 0 be so small that η ∈ D(0; δ) ⇒ Σb + (0, η) ⊂ Ω ∩
(
D × D

)
. Let b(η) =(

b
(η)
1 , ..., b

(η)
k−1

)
be defined pointwise by (7.4) in the previous section. By Remark 7.4(ii), each

b
(η)
j , being a linear combination of bj, ..., bk−1, is in G1. Thus, we can define continuous discs{
B

(η)
t =

(
B

(η)
t,0 , ...,B

(η)
t,k−1

)}
t∈[0,1]

using the Fourier coefficients of b
(η)
j (rei·), r ∈ (0, 1], just as

in equation (7.5). It is a simple observation that the same discs can be obtained by defining,

on D,

B
(η)
t,j := Bt,j +

k−1∑
l=j+1

(−1)l−j
(

l

l − j

)
Bt,lη

l−j + (−1)k−j
(

k

k − j

)
ηk−j. (7.6)

It is important to note that B
(0)
t ≡ Bt ∀t ∈ [0, 1].

Fix a domain D b Ω, such that S ⊂ D. We claim that the continuous family
{
B

(η)
t

}
t∈[0,1]

satisfies the following properties:

a) B
(η)
0 = b(η) ∀η ∈ D(0; δ);

b) for a fixed t, B
(η)
t depends analytically on η;

c) for each B
(η)
t , Σ

B
(η)
t
\D is an analytic subvariety of D× C \D; and

d) for each t, Σ
B

(η)
t
⊂ D× D ∀η ∈ D(0; δ).
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Properties a) and b) follow from construction. For c), it is enough to observe that

Σ
B

(η)
t

=
(

Σb(η),Ann(0;t,1)

)⋃(
Σ

B
(η)
t ,D(0;t)

)
,

and that B
(η)
t

∣∣
D(0;t)

∈ O(D(0; t);Ck). For property d), it is enough to show that

Σ
B

(η)
t ,D(0;t)

⊂ D× D.

But this follows from Lemma 7.7 applied to Σ
B

(η)
t ,D(0;t)

, with D(0; t) acting as G, since

Σ
B

(η)
t ,∂D(0;t)

≡ Σb(η),∂D(0;t) ⊂ ∂D(0; t)× D.

From this, we can conclude that the mapping A : D × [0, 1] → Ck with A(z, t) := Bt(z)

satisfies the hypotheses of Lemma 7.8. Thus, there exists a connected open neighbourhood

Ω1 of S1 := Σ
B

(0)
1
∪
(
∂D× D

)
and a f1 ∈ O(Ω1) such that

f1

∣∣
Ω1∩
(
V×D

) ≡ f
∣∣
Ω1∩
(
V×D

),
where V := Ann(0; 1− ε, 1 + ε), ε > 0, such that V × D ⊂ Ω.

But, B
(0)
1 is holomorphic by construction. Hence, from the analytic-multigraph version of

Hartogs’ lemma, ∃F ∈ O(D2) such that

F
∣∣
Ω1∩D2 ≡ f1

∣∣
Ω1∩D2 .

Thus, F and f must coincide in Ω1 ∩
(
V × D

)
∩ D2. As the latter is an open subset of the

connected set Ω ∩ D2,we conclude that

F
∣∣
Ω∩D2 ≡ f

∣∣
Ω∩D2 .

�

Proof of Theorem 7.3

The proof of this theorem is similar to that of Theorem 7.2. The main difference lies in the spe-

cific method of constructing, starting from the given multigraph, a continuous family of multi-

graphs along which we can achieve analytic continuation by invoking the Kontinuitätssatz.

Recall that, in the previous section, the form of each coefficient function aj facilitated the

construction of functions that were holomorphic on increasing concentric discs in D. In the

present case, to perturb the coefficients, we will construct analytic annuli attached to the
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graphs of aj along their inner boundaries, and to ∂D × D along their outer boundaries. In

view of Remark 7.4(i), we are compelled to work with a polydisc longer than D2.

Proof of Theorem 7.2. Let a(z) = ψ(z, z) := (ψ0(z, z), ..., ψk−1(z, z)). Set R := D × [0, 1].

Note that, by hypothesis, we can find an ε > 0 such that Ann(0; 1− 2ε, 1 + 2ε)×D(0; 2) ⊂ Ω.

Hence, just as in the proof of Theorem 6.1 in Chapter 6, it suffices to work with Σa,D(0;1−ε)

and the Hartogs configuration Sε := Σa,D(0;1−ε) ∪
(
∂D(0; 1− ε)×D(0; 2)

)
. This affords us the

very useful property:

(ζ, s) 7→ ψj(ζ, sζ) is continuous on D(0; 1− ε)× [0, 1], ∀j = 0, ..., k − 1.

Therefore, it actually suffices to prove Theorem 7.3 under the assumption that ψ0, ..., ψk−1 ∈
G2, where

G2 :=

{
ψ ∈ O(D2) ∩ C(D2

) : sup
(ζ,s)∈R

|ψ(ζ, sζ)| < 1

}
.

In order to avoid messy subscripted notation such as Σa,D(0;1−ε) and messy normalizations, we

shall hereafter assume that ψj ∈ G2, for j = 0, ..., k − 1.

We define a family of continuous discs {Ψt = (Ψt,0, ...,Ψt,k−1)}t∈[0,1) as follows:

Ψt(ζ) :=


a(ζ) = ψ(ζ, ζ), if ζ ∈ D(0; 1− t),

ψ
(
ζ, (1−t)2

ζ

)
, if ζ ∈ Ann(0; 1− t, 1).

(7.7)

Therefore, Ψ0 = a. We observe that {Ψt}t∈[0,1) is a continuous family in the sense that for a

fixed ζ0 ∈ D, t 7→ Ψt(ζ0) is continuous in the interval [0, 1). Furthermore, we may define

Ψ1(ζ) := lim
t→1−

Ψt(ζ) = ψ(ζ, 0), (7.8)

Thus, Ψ1 ∈ O(D;Ck). Also, note that, for each t ∈ [0, 1],

sup
ζ∈∂D
|Ψt,j(ζ)| = sup

ζ∈∂D

∣∣ψj(ζ, (1− t)2ζ)
∣∣ < 1, j = 0, ..., k − 1. (7.9)

Let δ > 0 be so small that

I η ∈ D(0; δ)⇒ Σa + (0, η) ⊂ Ω ∩
(
D× D

)
; and

I for all η ∈ D(0; δ) and j = 0, ..., k − 1,

sup
(ζ,s)∈R

∣∣ψj(ζ, sζ)
∣∣+

k−1∑
l=j+1

(
l

l − j

)
sup

(ζ,s)∈R

∣∣ψl(ζ, sζ)
∣∣ |η|l−j +

(
k

k − j

)
|η|k−j < 1. (7.10)
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Let ψ(η) =
(
ψ

(η)
1 , ..., ψ

(η)
k−1

)
∈ O(D2;Ck) be defined pointwise on D2

by (7.4). By (7.10),

sup
(ζ,s)∈R

∣∣∣ψ(η)
j (ζ, sζ)

∣∣∣ < 1 ∀η ∈ D(0; δ) and j = 0, ..., k − 1.

Thus, each ψ
(η)
j ∈ G2.

Now, just as in the proof of Theorem 7.2, we use {Ψt}t∈[0,1] to construct continuous families

of continuous discs
{

Ψ
(η)
t =

(
Ψ

(η)
t,0 , ...,Ψ

(η)
t,k−1

)}
t∈[0,1]

, on D, as follows:

Ψ
(η)
t,j := Ψt,j +

k−1∑
l=j+1

(−1)l−j
(

l

l − j

)
Ψt,lη

l−j + (−1)k−j
(

k

k − j

)
ηk−j. (7.11)

Note that Ψ
(0)
t = Ψt, and by construction

sup
ζ∈∂D

∣∣∣Ψ(η)
t (ζ)

∣∣∣ = sup
ζ∈∂D

∣∣∣ψ(η)
t (ζ, (1− t)2ζ)

∣∣∣ < 1. (7.12)

As before, fixing a domain D b Ω such that S ⊂ D, we claim that the following properties

are satisfied:

a∗) Ψ
(η)
0 = a(η) ∀η ∈ D(0; δ);

b∗) for a fixed t, Ψ
(η)
t , depends analytically on η;

c∗) for each Ψ
(η)
t , Σ

Ψ
(η)
t
\D is an analytic subvariety of D× C \D; and

d∗) for each t, Σ
Ψ

(η)
t
⊂ D×D(0; 2) ∀η ∈ D(0; δ).

Properties a∗) and b∗) pose no problem, and c∗) can be argued in exactly the same way as in

the previous section. For d∗), we write, in the notation established in the beginning of this

chapter:

Σ
Ψ

(η)
t ,∂Ann(0;1−t,1)

= Σ
Ψ

(η)
t ,∂D(0;1−t)

⋃
Σ

Ψ
(η)
t ,∂D. (7.13)

Note that Σ
Ψ

(η)
t ,∂D(0;1−t) ⊂ ∂D(0; 1− t)×D(0; 2), while due to inequality (7.12) and Remark

7.4(i), we have that Σ
Ψ

(η)
t ,∂D ⊂ ∂D × D(0; 2). Thus, applying Lemma 7.7 (specifically, its

paraphrasing in Remark 7.3) to Σ
Ψ

(η)
t ,Ann(0;1−t,1)

, we have that d∗) holds.

From this, we conclude that the mapping A : D × [0, 1] → Ck defined as A(z, t) := Ψt(z)

satisfies the hypotheses of Lemma 7.8. Thus, there exists a connected open neighbourhood
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Ω1 of S1 := Σ
Ψ

(0)
1
∪
(
∂D×D(0; 2)

)
and a f1 ∈ O(Ω1) such that

f1

∣∣
Ω1∩
(
V×D(0;2)

) ≡ f
∣∣
Ω1∩
(
V×D(0;2)

),
where V := Ann(0; 1−ε, 1+ε), ε > 0, such that V ×D(0; 2) ⊂ Ω. Ψ

(0)
1 being holomorphic by

construction, we can repeat the argument presented in the proof of Theorem 7.2 to conclude

that ∃F ∈ O(D2) such that

F
∣∣
Ω∩D2 ≡ f

∣∣
Ω∩D2 .

�
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