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A few words on this note

This note summarizes the results from measure and integration theory and Lp

spaces that we would be using constantly throughout the course. However, the
last subsection on weak convergence in Lp would not be used until much later
in the course and that too only a little bit. So one can safely skip reading that
subsection.

Most of the material in this note is standard and can be found in almost any
book discussing measure and integration theory. You can pick your favorite
among the absolute classics - Rudin [4], Folland [1], Royden [3] or Hewitt and
Stromberg [2].

1 Preliminaries on Measure and Integration

1.1 Measure space

Let (Ω,M, µ) denote a measure space, i.e., Ω is a set and

• M is a σ-algebra on Ω, i.e., M is a collection of subsets of Ω such that:

– ∅ ∈ M,

– A ∈M⇒ Ac ∈M,

–

∞⋃
n=1

An ∈M whenever An ∈M for every n.

• µ is a measure, i.e., µ :M→ [0,∞] satisfies

– µ (∅) = 0,

– µ

( ∞⋃
n=1

An

)
=

∞⋃
n=1

µ (An) , whenever {An} is a disjoint countable

family of members of M ( called µ-measurable sets ).

Although not strictly essential, we shall also assume that

– µ is σ-finite, i.e. there exists a countable family {Ωn} ⊂ M such that
Ω =

⋃∞
n=1 Ωn and µ (Ωn) <∞ for every n.

The sets E ∈ M with the property that µ (E) = 0 are called the µ-null sets.
A measure space (Ω,M, µ) is called a complete measure space if any subset A
of a µ-null set is in M. We say that a property holds µ a.e. (or for µ-almost
all x ∈ Ω ) if it holds everywhere on Ω except on a µ-null set. If Ω ⊂ Rn and
we do not specify the measure µ, then it is implicitly understood that µ is the
Lebesgue measure on Rn, which we define in the next subsection.

Note that if (Ω,M, µ) is a measure space and A ∈M, then the collection of
setsMA := {A ∩B : B ∈M} is a σ-algebra on A and (A,MA, µ) is a measure
space in its own right.
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1.2 Lebesgue Measure on Rn

Lebesgue measure provides a way to talk about ‘n-dimensional size’ or ‘volume’
of reasonably ‘nice’ subsets of Rn.

Theorem 1. There exists a unique σ-algebra L on Rn and a unique measure

|·| : L → [0,+∞]

such that

1. Every open subset of Rn and hence any Borel subset of Rn is in L,

2. For any E ∈ L and any x ∈ Rn, the set E + x := {x+ y : y ∈ E} is also
in L and we have

|E + x| = |E| .

3. For any ball B ⊂ Rn, |B| is the n-dimensional volume of the ball.

4. For any compact subset K ⊂ Rn, |K| <∞.

5. For every A ∈ L, we have

|A| = sup {|K| : K ⊂ A, K compact } = inf {|U | : A ⊂ U, U open } ,

6. (Rn,L, |·|) is a complete measure space.

The sets in L are called Lebesgue measurable sets and |·| is called the n-
dimensional Lebesgue measure on Rn.

1.3 Measurable and integrable functions

Definition 2. Let (Ω,M, µ) be a measure space. A function f : Ω → R is
called µ-measurable if

f−1 (U) ∈M for every open subset U ⊂ R.

When Ω is a Lebesgue measurable subset of Rn and f : Ω → R, we say f is
measurable when it is measurable with respect to the n-dimensional Lebesgue
measure.

Since all open sets are in L, it is easy to that any continuous function f :
Ω ⊂ Rn → R is measurable when Ω ⊂ Rn is open. Composition of measurable
functions are not always measurable. However, it is easy to see that if f is
measurable and g is continuous, then g ◦ f is measurable.

Proposition 3. Let f, g : Rn → R is measurable and λ ∈ R. Then λf, f + g,
fg, max {f, g} , min {f, g} are all measurable. Moreover, if fk : Rn → R are
measurable for every k ∈ N, then lim sup

k→∞
fk and lim inf

k→∞
fk are measurable.
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Definition 4. Given a subset A ∈ Rn, the function 1A : Rn → R, defined by

1A (x) =

{
1 if x ∈ A,
0 if x ∈ Rn \A,

is called the characteristic function or the indicator function of the set A.

Proposition 5. If A ⊂ Rn is measurable, i.e. A ∈ L, then 1A is a measurable
function.

Definition 6. A function f : Rn → R is called simple if it is a finite linear
combination of indicator functions, i.e. f is of the form

f (x) =

m∑
i=1

ci1Ai (x) ,

where m ∈ N and for each 1 ≤ i ≤ m, we have ci ∈ R and Ai ∈ L. We define
the Lebesgue integral of a nonnegative simple function f as

ˆ
Rn

f (x) dx :=

m∑
i=1

ci |Ai| .

Definition 7. Let f : Rn → R be a nonnegative measurable function. Then
its Lebesgue integral is defined as

ˆ
Rn

f (x) dx := sup

{ˆ
Rn

ψ (x) dx : 0 ≤ ψ ≤ f, ψ simple

}
.

Definition 8. Let f : Rn → R be a measurable function. Then the nonnegative
measurable functions f+ = max {f, 0} and f− = max {−f, 0} are called the
positive and negative parts of f , respectively. If at least one of these functions
has a finite integral, then we define the Lebesgue integral of f as

ˆ
Rn

f (x) dx :=

ˆ
Rn

f+ (x) dx−
ˆ
Rn

f− (x) dx.

For any A ∈ L, we define the integral of f in A as
ˆ
A

f (x) dx :=

ˆ
Rn

1A (x) f (x) dx.

Definition 9. Let f : Rn → R be a measurable function. We say f is inte-
grable, written as f ∈ L1 (Rn) if

ˆ
Rn

|f (x)| dx <∞.

For any Ω ∈ L, we say f is integrable in Ω if
ˆ

Ω

|f (x)| dx <∞.
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For such functions, we shall use the notations

‖f‖L1(Ω) = ‖f‖L1 =

ˆ
Ω

|f | dµ =

ˆ
|f | .

We also identify two function which coincides a.e.

Definition 10. Let f : Rn → R be a measurable function. We say f is locally
integrable, written as f ∈ L1

loc (Rn) if f is integrable in K for any compact
subset K ⊂ Rn.

2 Basic results in Lebesgue integration

2.1 Convergence theorems

Theorem 11 (Monotone convergence theorem). Let {fk} be a sequence of non-
negative measurable functions in Ω ⊂ Rn that satisfy

0 ≤ f1 ≤ f2 ≤ . . . ≤ fk ≤ fk+1 ≤ . . . a.e. in Ω.

Define the function f by

f (x) := lim
k→∞

fk (x) for a.e. x ∈ Ω.

Then we have ˆ
Ω

f (x) dx = lim
k→∞

ˆ
Ω

fk (x) dx.

Note that integrals in the last equality can be both infinite. A simple corol-
lary is the following.

Corollary 12. Let {fk} be a sequence of nonnegative functions in L1 (Ω) that
satisfy

• 0 ≤ f1 ≤ f2 ≤ . . . ≤ fk ≤ fk+1 ≤ . . . a.e. on Ω,

• supk fk <∞.

Then fk(x) converges a.e. on Ω to a finite limit, which we denote by f(x). The
function f belongs to L1 (Ω) and ‖fk − f1‖L1 → 0.

Theorem 13 (Fatou’s lemma). Let {fk} be a sequence of nonnegative measur-
able functions in Ω ⊂ Rn. Define the function f by

f (x) := lim inf
k→∞

fk (x) for a.e. x ∈ Ω.

Then we have ˆ
Ω

f (x) dx ≤ lim inf
k→∞

ˆ
Ω

fk (x) dx.
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An easy corollary is

Corollary 14. Let {fk} be a sequence of functions in L1 (Ω) that satisfy

• for all k, fk ≥ 0 a.e.

• supk
´

Ω
fk <∞.

For a.e. x ∈ Ω, we set f(x) = lim inf
k→∞

fk(x) ≤ +∞. Then f ∈ L1 (Ω) and

ˆ
Ω

f(x) dx ≤ lim inf
k→∞

ˆ
Ω

fk dx.

Theorem 15 (Dominated convergence theorem). Let {fk} be a sequence of
functions in L1 (Ω) that satisfy

• fk(x)→ f(x) a.e. on Ω,

• there exists a function g ∈ L1 (Ω) such that for all k, we have |fk(x)| ≤
|g(x)| a.e. on Ω.

Then f ∈ L1 (Ω) and ‖fk − f1‖L1 → 0.

2.2 Change of variable

We denote the set of all n × n invertible real matrices by GL (n,R) . With an
abuse of notation, if T : Rn → Rn is an invertible linear transformation, we also
write T ∈ GL (n,R) .

Theorem 16. Let T ∈ GL (n,R) .

1. If A ∈ L, then T (A) ∈ L and |T (A)| = |detT | |A| .

2. If f : Rn → R is measurable, then so is f ◦ T. If f ≥ 0 or f ∈ L1 (Rn) ,
then we have ˆ

Rn

f (x) dx = |detT |
ˆ
Rn

f (Tx) dx.

Theorem 17. Let Ω ⊂ Rn be open and let Φ : Ω→ Rn be a C1 diffeomorphism.

1. If A ⊂ Ω is measurable, then so is Φ (A) and

|Φ (A)| =
ˆ
A

|detDΦ| (x) dx.

2. If f : Ω→ R is measurable, then so is f ◦Φ. If f ≥ 0 or f ∈ L1 (Ω) , then
we have ˆ

Φ(Ω)

f (x) dx =

ˆ
Ω

f ◦ Φ (x) |detDΦ| (x) dx.
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2.3 Product measures

Let (Ω1,M1, µ1) and (Ω2,M2, µ2) be two measure spaces that are σ-finite. One
can then define in a standard way the structure of a complete measure space
(Ω,M, µ) on the Cartesian product Ω = Ω1 × Ω2. The product measure so
obtained is often denoted by µ = µ1 × µ2.

There are two cases of product measures that are of particular interest to
us. The first is the obvious one. It is suggested both by the fact that for any
two m,n ∈ N, we have Rm+n = Rm × Rn and also by the heuristic notions like
‘area = length × width’, ‘volume = cross-sectional area × height = length ×
width × height’ etc. For stating the result, we would switch to writing µn as
the n-dimensional Lebesgue measure and Ln as the Lebesgue σ-algebra on Rn.

Proposition 18. The complete measure space on the Cartesian product cor-
responding to the measure spaces (Rm,Lm, µm) and (Rn,Ln, µn) is precisely
(Rm+n,Lm+n, µm+n) .

The next important product measure situation is the polar co-ordinate for-
mula. This essentially depends on two facts. The first is that the Lebesgue
measure of a point is zero and thus for integration, Rn and Rn \ {0} are the
same. The second fact is that Rn\{0} can be bijectively mapped into a Cartesian
product. Let Sn−1 = {x ∈ Rn : |x| = 1} be the unit sphere. For x ∈ Rn \ {0} ,
let us use the notation

x̂ =
x

|x|
∈ Sn−1.

Then the map
Φ : Rn \ {0} → (0,∞)× Sn−1

given by
Φ (x) = (|x| , x̂)

is a continuous bijection with a continuous inverse. Thus, the n-dimensional
Lebesgue measure µn on Rn ( more precisely, its restriction to Rn\{0} ) induces
a complete measure m on the Cartesian product (0,∞)×Sn−1 in a natural way.1

Now, as one can guess, there exist two essentially unique measures ρ and Σ on
(0,∞) and Sn−1 respectively, so that m = ρ× Σ. In fact, by scaling properties
of µn, one can show that ρ can only be given by

ρ (A) =

ˆ
A

rn−1 dr,

where, as the notation indicates, the integration is performed with respect to
the one dimensional Lebesgue measure. Thus we have

1 One way to do it is by defining

m (A) = µn
(
Φ−1 (A)

)
for all Borel sets A

and then completing the Borel measure so obtained.
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Proposition 19 (Polar coordinate formula). There exists a complete measure
Σ ( essentially unique ) on Sn−1 such that for any f : Rn → R measurable with
either f is nonnegative or f ∈ L1 (Rn) , we have

ˆ
Rn

f (x) dx =

ˆ ∞
0

ˆ
Sn−1

f (ry) rn−1 dΣ (y) dr.

Now we turn to the question of when we can permute the order of the
integrals.

Theorem 20 (Fubini theorem). Let (Ω1,M1, µ1) and (Ω2,M2, µ2) be two com-
plete measure spaces. Let f : Ω1 × Ω2 → R be integrable in Ω = Ω1 × Ω2. Then

x 7→ f (x, y) is µ1-integrable in Ω1 for µ2-almost all y ∈ Ω2,

y 7→ f (x, y) is µ2-integrable in Ω2 for µ1-almost all x ∈ Ω1.

Furthermore,

x 7→
ˆ

Ω2

f (x, y) dµ2 is µ1-integrable in Ω1,

y 7→
ˆ

Ω1

f (x, y) dµ1 is µ2-integrable in Ω2

and we have the equality

ˆ
Ω1×Ω2

f(x, y) d (µ1 × µ2) =

ˆ
Ω1

(ˆ
Ω2

f(x, y) dµ2

)
dµ1

=

ˆ
Ω2

(ˆ
Ω1

f(x, y) dµ1

)
dµ2. (1)

Theorem 21 (Tonelli theorem). Let (Ω1,M1, µ1) and (Ω2,M2, µ2) be two com-
plete σ-finite measure spaces. Let f : Ω1×Ω2 → R be a nonnegative measurable
function. Then (1) holds and thus the individual integrals are either all finite
or all infinite.

Combining the two results above, we obtain a useful version which is usually
called the Fubini-Tonelli theorem.

Theorem 22 (Fubini-Tonelli theorem). Let (Ω1,M1, µ1) and (Ω2,M2, µ2) be
two complete σ-finite measure spaces. Let f : Ω1 × Ω2 → R be a measurable
function. Then

ˆ
Ω1×Ω2

|f(x, y)| d (µ1 × µ2) =

ˆ
Ω1

(ˆ
Ω2

|f(x, y)| dµ2

)
dµ1

=

ˆ
Ω2

(ˆ
Ω1

|f(x, y)| dµ1

)
dµ2. (2)
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Further, if any one of the integrals is finite, so are the other two and we have
the following equality between finite signed integrals

ˆ
Ω1×Ω2

f(x, y) d (µ1 × µ2) =

ˆ
Ω1

(ˆ
Ω2

f(x, y) dµ2

)
dµ1

=

ˆ
Ω2

(ˆ
Ω1

f(x, y) dµ1

)
dµ2. (3)

2.4 Differentiation

An integrable function is ‘approximately continuous’ at almost every point.

Theorem 23 (Lebesgue differentiation theorem). Let f ∈ L1
loc (Rn) . Then for

a.e. x0 ∈ Rn, we have

 
B(x0,r)

f (x) dx :=
1

|B (x0, r)|

ˆ
B(x0,r)

f (x) dx→ f (x0) as r → 0 + .

Moreover, for a.e. x0 ∈ Rn,
 
B(x0,r)

|f (x)− f (x0)| dx→ 0 as r → 0 + .

For a given f, the points x0 ∈ Rn for which the conclusions of the theorem
holds are called Lebesgue points of f .

3 Lp spaces

3.1 Support of a continuous function

Definition 24. Let f : Rn → R be continuous. Then the support of f , denoted
by supp f, is defined as the closure of the set where f is nonzero. More precisely,

supp f := {x ∈ Rn : f (x) 6= 0}.

The definition of support for functions defined on an open proper subset of
of Rn is superficially the same, but has an important difference.

Definition 25. Let Ω ⊂ Rn be open and let f : Ω → R be continuous. Then
the support of f , denoted by supp f, is defined as the closure in the subspace
topology of Ω of the set where f is nonzero. More precisely,

supp f := {x ∈ Ω : f (x) 6= 0}
Ω
,

Note that when Ω is a proper subset of Rn, there is a crucial difference from
the earlier definition. Since Ω is always closed in the subspace topology of Ω,
the support of any function which vanish nowhere in Ω is Ω itself and is thus
not a closed set Rn.
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Definition 26. Let f : Rn → R be continuous. f is said to be compactly
supported, denoted f ∈ Cc (Rn) if supp f is a compact subset of Rn. If f is
moreover Ck for some k ∈ N or C∞ and has compact support, we write f ∈
Ckc (Rn) or f ∈ C∞c (Rn) , respectively.

Similarly, if Ω ⊂ Rn is open and let f : Ω → R is continuous, then f is
said to be compactly supported in Ω, denoted f ∈ Cc (Ω) if supp f is a compact
subset of Rn. As before, if f is moreover Ck for some k ∈ N or C∞ and has
compact support in Ω, we write f ∈ Ckc (Ω) or f ∈ C∞c (Ω) , respectively.

Although the definition for Ω and Rn looks exactly the same, since the
definition of support differes, once again there is a crucial difference when Ω
is a proper subset of Rn. Since Ω ⊂ Rn is open, one can deduce that if f is
compactly supported in Ω, the support of f is a closed set in Rn and hence
must be strictly contained in Ω. Hence f must vanish not only on ∂Ω, but in a
neighborhood of ∂Ω as well.

3.2 Basic definitions and properties of Lp spaces

Definition 27. Let Ω ⊂ Rn be an open set and 1 ≤ p ≤ ∞. We say that a
measurable function u : Ω→ R belongs to Lp (Ω) if

‖u‖Lp =


(ˆ

Ω

|u (x)|p dx

) 1
p

if 1 ≤ p <∞

inf {α : |u (x)| ≤ α a.e. in Ω} if p =∞

is finite. As above, if u : Ω→ RN , u =
(
u1, · · · , uN

)
, is such that ui ∈ Lp (Ω) ,

for every i = 1, · · · , N, we write u ∈ Lp
(
Ω;RN

)
.

Definition 28. Let Ω ⊂ Rn be an open set and 1 ≤ p < ∞. We say that a
measurable function u : Ω→ R belongs to Lploc (Ω) if we have

ˆ
Ω

|u (x)|p dx <∞ for any compact K ⊂ Ω.

In the following, we let p′ be the conjugate exponent of p. It is defined by

1

p
+

1

p′
= 1 ⇔ p′ =

p

p− 1

with the convention that if p = 1, respectively p =∞, then p′ =∞, respectively
p′ = 1. Now we summarize the most important properties of Lp spaces that we
need.

Theorem 29. Let Ω ⊂ Rn be open and 1 ≤ p ≤ ∞.

(i) ‖·‖Lp is a norm and Lp (Ω), equipped with this norm, is a Banach space2.

2A Banach space is a normed linear space which is complete as a metric space ( with the
metric induced from the norm ).
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The space L2 (Ω) is a Hilbert space3 with inner product given by

〈u; v〉 =

ˆ
Ω

u (x) v (x) dx.

(ii) Hölder inequality asserts that if u ∈ Lp (Ω) and v ∈ Lp
′
(Ω) where

1/p+ 1/p′ = 1, then uv ∈ L1 (Ω) and moreover

‖uv‖L1 ≤ ‖u‖Lp ‖v‖Lp′ .

(iii) Young’s inequality asserts that if u ∈ Lp (Ω) and v ∈ Lp
′
(Ω) where

1/p+ 1/p′ = 1, then uv ∈ L1 (Ω) and moreover

‖uv‖L1 ≤
1

p
‖u‖pLp +

1

p′
‖v‖p

′

Lp′ .

(iv) Young’s inequality with ε asserts that for every ε > 0, there exists a
constant Cε > 0 such that for any u ∈ Lp (Ω) and v ∈ Lp

′
(Ω) where

1/p+ 1/p′ = 1, we have

‖uv‖L1 ≤ ε ‖u‖pLp + Cε ‖v‖p
′

Lp′ .

(v) Minkowski inequality asserts that

‖u+ v‖Lp ≤ ‖u‖Lp + ‖v‖Lp .

(vi) Riesz theorem: the dual space of Lp, denoted by (Lp)
′
, can be identified

with Lp
′
(Ω) where 1/p+ 1/p′ = 1 provided 1 ≤ p <∞. More precisely, if

ϕ ∈ (Lp)
′

with 1 ≤ p <∞, then there exists a unique u ∈ Lp′ so that

〈ϕ; f〉 = ϕ (f) =

ˆ
Ω

u (x) f (x) dx, ∀ f ∈ Lp (Ω)

and moreover
‖u‖Lp′ = ‖ϕ‖(Lp)′ .

As a consequence, for 1 ≤ p <∞, there is an alternative characterization
of the Lp norm.

‖u‖Lp = sup
v∈Lp′ ,
‖v‖

Lp′≤1

ˆ
uv = sup

v∈Lp′ ,
‖v‖

Lp′=1

ˆ
uv.

(vii) Lp is separable4 if 1 ≤ p <∞ and reflexive if 1 < p <∞.
3A Hilbert space is an inner product space which is complete as a metric space ( with

the metric induced from the inner product ).
4A topological space is called separable if it has a countable dense subset.
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(viii) Let 1 ≤ p <∞. The piecewise constant functions (also called step functions
if Ω ⊂ R) or the C∞c (Ω) functions are dense in Lp. More precisely, if
u ∈ Lp (Ω) then there exist uν ∈ C∞c (Ω) (or uν piecewise constant) so
that

lim
ν→∞

‖uν − u‖Lp = 0.

Remark 30. (i) In the case p = 2 and hence p′ = 2, Hölder inequality is
nothing but Cauchy-Schwarz inequality

‖uv‖L1 ≤ ‖u‖L2 ‖v‖L2 , i.e.

ˆ
Ω

|uv| ≤
(ˆ

Ω

u2

)1/2(ˆ
Ω

v2

)1/2

.

(ii) In Riesz theorem the result is false if p =∞ (and hence p′ = 1).

(iii) In the following, we always make the identification (Lp)
′

= Lp
′
. Sum-

marizing the results on duality we have

(Lp)
′

= Lp
′

if 1 < p <∞,(
L2
)′

= L2,
(
L1
)′

= L∞, L1 ⊂
6=

(L∞)
′
.

(iv) The meaning of Lp reflexive is that the bidual of Lp, (Lp)
′′
, can be

identified with Lp.

(v) The last statement in the theorem is false if p =∞.

3.3 Convolution

Definition 31. Let f, g : Rn → R be measurable functions. Then the convolu-
tion of f and g, denoted f ∗ g, is defined as

f ∗ g (x) :=

ˆ
Rn

f (x− y) g (y) dy,

for all x ∈ Rn for which the integral exists.

Proposition 32. Let f, g, h : Rn → R be measurable functions. Assuming all
the integrals in question exists, we have

1. f ∗ g = g ∗ f.

2. (f ∗ g) ∗ h = f ∗ (g ∗ h) .

3. supp (f ∗ g) ⊂ supp f + supp g, where the sum on the right means the set

{x+ y : x ∈ supp f, y ∈ supp g} .

Theorem 33 (Young’s inequality for convolutions). Let 1 ≤ p, q, r ≤ ∞ such
that

1

p
+

1

q
=

1

r
+ 1.

If f ∈ Lp (Rn) and g ∈ Lq (Rn) , then f ∗ g ∈ Lr (Rn) and we have

‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lp(Rn) ‖g‖Lq(Rn) .
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Proposition 34. If f ∈ L1 (Rn) and g ∈ Ck (Rn) with Dαg ∈ L∞ (Rn) for
each multiindex α with |α| ≤ k, then f ∗ g ∈ Ck (Rn) and we have

Dα (f ∗ g) = f ∗Dαg

for each multiindex α with |α| ≤ k.

Proposition 35. If f ∈ L1
loc (Rn) and g ∈ Ckc (Rn) then f ∗ g ∈ Ck (Rn) and

we have

Dα (f ∗ g) = f ∗Dαg

for each multiindex α with |α| ≤ k.

3.4 Mollifiers

Definition 36. A function φ : Rn → R is called a smoothing kernel or a
mollifying kernel if

(i) φ ∈ C∞c (Rn) ,

(ii) suppφ ⊂ B (0, 1),

(iii) φ ≥ 0 and φ 6≡ 0,

(iv) For some finite nonzero real number a ∈ R with a > 0, we have

ˆ
Rn

φ (x) dx = a.

Given a smoothing kernel φ, the sequence of mollifiers corresponding to φ is
the sequence {φk}k∈N ⊂ C∞c (Rn) where

φk (x) =
1

a
knφ (kx) for every x ∈ Rn

for every k ∈ N.

A typical example of such a smoothing kernel is provided by the function

φ (x) =

{
e
− 1

(1−|x|2) if |x| ≤ 1,

0 if |x| > 1.

Theorem 37. Let {φk}k∈N ⊂ C∞c (Rn) be a sequence of mollifiers. Then

(i) Let 1 ≤ p < ∞ and let f ∈ Lp (Rn) . Then fk := φk ∗ f ∈ C∞ (Rn) for
every k ∈ N and we have

‖fk − f‖Lp(Rn) → 0 as k →∞.
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(ii) Let f ∈ C (Rn) . Then fk := φk ∗ f ∈ C∞ (Rn) for every k ∈ N and

fk → f uniformly on any compact subset K ⊂ Rn.

(iii) Let f ∈ Ck (Rn) for some k ∈ N. Then fs := φs ∗ f ∈ C∞ (Rn) for every
s ∈ N and

Dαfs → Dαf uniformly on any compact subset K ⊂ Rn

for any multiindex α with |α| ≤ k.

The process of constructing the sequence of functions fk := φk ∗ f, where
{φk}k∈N ⊂ C∞c (Rn) is a sequence of mollifiers, is called mollifying f or simply
mollification.

3.5 Weak convergence in Lp

We now turn our attention to the notions of convergence in Lp spaces. The
natural notion, called strong convergence, is the one induced by the ‖·‖Lp norm.
We also often need a weaker notion of convergence known as weak convergence.
We now define these notions.

Definition 38. Let Ω ⊂ Rn be an open set and 1 ≤ p ≤ ∞.
(i) A sequence uν is said to (strongly) converge to u in Lp if uν , u ∈ Lp

and if
lim
ν→∞

‖uν − u‖Lp = 0.

We denote this convergence by uν → u in Lp.

(ii) If 1 ≤ p <∞, we say that the sequence uν weakly converges to u in Lp

if uν , u ∈ Lp and if

lim
ν→∞

ˆ
Ω

[uν (x)− u (x)]ϕ (x) dx = 0, ∀ϕ ∈ Lp
′
(Ω) .

This convergence is denoted by uν ⇀ u in Lp.

(iii) If p =∞, the sequence uν is said to weak ∗ converge to u in L∞ if uν ,
u ∈ L∞ and if

lim
ν→∞

ˆ
Ω

[uν (x)− u (x)]ϕ (x) dx = 0, ∀ϕ ∈ L1 (Ω)

and is denoted by: uν
∗
⇀ u in L∞.

(iv) Let {uν} be a sequence of measurable functions on Ω into R and let
u : Ω → R be a measurable function in Ω. The sequence {uν} converges in
measure to u , if for any ε > 0

limµ ({x ∈ Ω : |uν(x)− u(x)| > ε}) = 0.
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Remark 39. (i) We speak of weak ∗ convergence in L∞ instead of weak conver-
gence, because as seen above the dual of L∞ is strictly larger than L1. Formally,
however, weak convergence in Lp and weak ∗ convergence in L∞ take the same
form.

(ii) The limit (weak or strong or in measure) is unique.

(iii) It is obvious that

uν → u in Lp ⇒

{
uν ⇀ u in Lp if 1 ≤ p <∞
uν

∗
⇀ u in L∞ if p =∞.

If Ω has finite measure, then uν → u a.e. implies uν → u in measure. If uν → u
in measure, then there is a subsequence uνi that converges to u a.e.

Theorem 40. Let Ω ⊂ Rn be a bounded open set. The following properties
then hold.

(i) If uν
∗
⇀ u in L∞, then uν ⇀ u in Lp, ∀ 1 ≤ p <∞.

(ii) If 1 ≤ p ≤ ∞ and uν → u in Lp, then

‖u‖Lp = lim
ν→∞

‖uν‖Lp .

(iii) If 1 ≤ p < ∞ and if uν ⇀ u in Lp, then there exists a constant γ > 0
so that

‖uν‖Lp ≤ γ and ‖u‖Lp ≤ lim inf
ν→∞

‖uν‖Lp .

The result remains valid if p =∞ and if uν
∗
⇀ u in L∞.

(iv) If 1 < p < ∞ and if there exists a constant γ > 0 so that ‖uν‖Lp ≤ γ,
then there exist a subsequence {uνi} and u ∈ Lp so that

uνi ⇀ u in Lp.

The result remains valid if p =∞, the conclusion is then uνi
∗
⇀ u in L∞.

(v) Let 1 ≤ p ≤ ∞ and uν → u in Lp, then there exist a subsequence {uνi}
and h ∈ Lp such that

uνi → u a.e. and |uνi | ≤ h a.e.

Remark 41. (i) Comparing (ii) and (iii) of the theorem, we see that weak con-
vergence ensures the lower semicontinuity of the norm, while strong convergence
guarantees its continuity.

(ii) The most interesting part of the theorem is (iv). We know that in Rn,
Bolzano-Weierstrass theorem ascertains that from any bounded sequence we can
extract a convergent subsequence. This is false in Lp spaces (and more generally
in infinite dimensional spaces); but it is true if we replace strong convergence
by weak convergence.

(iii) The result (iv) is, however, false if p = 1; this is a consequence of
the fact that L1 is not a reflexive space. To deduce, up to the extraction of a
subsequence, weak convergence, it is not sufficient to have ‖uν‖L1 ≤ γ, we need
a condition known as “equiintegrability”.
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Part (ii) has a partial converse.

Theorem 42 (Radon-Riesz). Let 1 < p <∞ and let un : Ω→ R be a sequence
in Lp (Ω) converging weakly to u ∈ Lp (Ω) and

‖un‖Lp(Ω) → ‖u‖Lp(Ω) .

Then
un → u in Lp (Ω) .

There is another converse which works even when p = 1.

Theorem 43. Let 1 ≤ p <∞ and let un : Ω→ R be a sequence in Lp (Ω) such
that un → u a.e and

‖un‖Lp(Ω) → ‖u‖Lp(Ω) .

Then
un → u in Lp (Ω) .

We now turn to Riemann-Lebesgue theorem which allows one to easily con-
struct weakly convergent sequences that do not converge strongly. This theorem
is particularly useful when dealing with Fourier series (there u (x) = sinx or
cosx).

Theorem 44 (Riemann-Lebesgue theorem). Let 1 ≤ p ≤ ∞ and u ∈ Lp (Ω)
where Ω =

∏n
i=1 (ai, bi) . Let u be extended by periodicity from Ω to Rn and

define

uν (x) = u (νx) and u =
1

|Ω|

ˆ
Ω

u (x) dx

then uν ⇀ u in Lp if 1 ≤ p <∞ and, if p =∞, uν
∗
⇀ u in L∞.
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