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A few words on this note

This note summarizes the results from measure and integration theory and LP
spaces that we would be using constantly throughout the course. However, the
last subsection on weak convergence in LP would not be used until much later
in the course and that too only a little bit. So one can safely skip reading that
subsection.

Most of the material in this note is standard and can be found in almost any
book discussing measure and integration theory. You can pick your favorite
among the absolute classics - Rudin [4], Folland [I], Royden [3] or Hewitt and
Stromberg [2].

1 Preliminaries on Measure and Integration

1.1 Measure space
Let (2, M, 1) denote a measure space, i.e., { is a set and
e M is a g-algebra on (2, i.e., M is a collection of subsets of 2 such that:

- PeM,
—Ae M= A°e M,

— U A, € M whenever A,, € M for every n.

n=1

e 1 is a measure, i.e., u: M — [0, o0] satisfies

—u(0)=0,

[ee] (oo}
- u (U An> = U i (Ay,), whenever {4,} is a disjoint countable
n=1 n=1
family of members of M ( called p-measurable sets ).
Although not strictly essential, we shall also assume that

— pis o-finite, i.e. there exists a countable family {Q,} C M such that
Q=U,2,9, and u(Q,) < oo for every n.

The sets E € M with the property that p(E) = 0 are called the p-null sets.
A measure space (Q, M, u) is called a complete measure space if any subset A
of a p-null set is in M. We say that a property holds p a.e. (or for p-almost
all x € Q) if it holds everywhere on € except on a p-null set. If  C R and
we do not specify the measure y, then it is implicitly understood that p is the
Lebesgue measure on R™, which we define in the next subsection.

Note that if (2, M, ) is a measure space and A € M, then the collection of
sets M4 :={ANB: B e M} isao-algebra on A and (A, M4, ) is a measure
space in its own right.



1.2 Lebesgue Measure on R"

Lebesgue measure provides a way to talk about ‘n-dimensional size’ or ‘volume’
of reasonably ‘nice’ subsets of R™.

Theorem 1. There exists a unique o-algebra L on R™ and a unique measure
|| : £ — [0, +00]
such that

1. Every open subset of R™ and hence any Borel subset of R™ is in L,

2. For any E € L and any x € R™, the set E+x :={x+y:y € E} is also
in L and we have
|E + x| = |E|.

3. For any ball B C R™, |B| is the n-dimensional volume of the ball.
4. For any compact subset K C R™, |K| < 0.

5. For every A € L, we have

|Al =sup{|K|: K C A, K compact } =inf{|U|: AC U, U open },

6. (R™, L,||) is a complete measure space.

The sets in £ are called Lebesgue measurable sets and || is called the n-
dimensional Lebesgue measure on R”.

1.3 Measurable and integrable functions

Definition 2. Let (Q, M, u) be a measure space. A function f : Q — R is
called p-measurable if

f~H(U) € M for every open subset U C R.

When ) is a Lebesgue measurable subset of R™ and f : Q — R, we say f is
measurable when it is measurable with respect to the n-dimensional Lebesgque
measure.

Since all open sets are in L, it is easy to that any continuous function f :
Q C R™ — R is measurable when 2 C R" is open. Composition of measurable
functions are not always measurable. However, it is easy to see that if f is
measurable and ¢ is continuous, then g o f is measurable.

Proposition 3. Let f,g : R® — R is measurable and A € R. Then \f, f + g,
fg, max{f,g}, min{f, g} are all measurable. Moreover, if fr : R — R are

measurable for every k € N, then limsup fi and liminf fi, are measurable.
k—00 k—o0



Definition 4. Given a subset A € R™, the function 14 : R™ — R, defined by

1 ifx e A,
L‘(x)_{o ifz € R\ A,

18 called the characteristic function or the indicator function of the set A.

Proposition 5. If A C R" is measurable, i.e. A € L, then 14 is a measurable
Sfunction.

Definition 6. A function f : R™ — R is called simple if it is a finite linear
combination of indicator functions, i.e. f is of the form

F@) =Y eda, (@),
=1

where m € N and for each 1 < 1 < m, we have ¢; € R and A; € L. We define
the Lebesgue integral of a nonnegative simple function f as

fz) do:= ci|Ail.
R i=1

Definition 7. Let f : R® — R be a nonnegative measurable function. Then
its Lebesgue integral is defined as

f(x) dx::sup{ ¥ (x) dx:OSwa,wsimple}.
R =
Definition 8. Let f : R” — R be a measurable function. Then the nonnegative
measurable functions f* = max{f,0} and f~ = max{—f,0} are called the

positive and negative parts of f, respectively. If at least one of these functions
has a finite integral, then we define the Lebesgue integral of f as

f(x) dz = T (z) do — f~(x) da.
R R R
For any A € L, we define the integral of f in A as
/f(m) dz ::/ 14 (z) f () de.
A R

Definition 9. Let f : R® — R be a measurable function. We say f is inte-
grable, written as f € L' (R™) if

[ 7@l o<

For any Q € L, we say f is integrable in § if

1@l o <.



For such functions, we shall use the notations

sy = Ils = [ 171 = [ 111

We also identify two function which coincides a.e.

Definition 10. Let f : R™ — R be a measurable function. We say f is locally
integrable, written as f € L}, (R™) if f is integrable in K for any compact
subset K C R™.

2 Basic results in Lebesgue integration

2.1 Convergence theorems

Theorem 11 (Monotone convergence theorem). Let {fx} be a sequence of non-
negative measurable functions in  C R™ that satisfy

OSfl ng < ka ka-O-l <... a.e. m Q.
Define the function f by

f(x):= klim fr () for a.e. x € Q.

Then we have

/Q f(z) do = Jim /Q fo(2) da.

Note that integrals in the last equality can be both infinite. A simple corol-
lary is the following.

Corollary 12. Let {fi} be a sequence of nonnegative functions in L' () that
satisfy

e 0< fi<fo<...<fi<frr1<...ae on,
e sup,, fi < oo.

Then fi(x) converges a.e. on Q) to a finite limit, which we denote by f(x). The
function f belongs to L' () and || fi — fill;+ — 0.

Theorem 13 (Fatou’s lemma). Let {fi} be a sequence of nonnegative measur-
able functions in Q@ C R™. Define the function f by

f(z):= likrginf fr (x) for a.e. x € Q.

Then we have

/Q /(@) de < liminf /Q i (@) da.



An easy corollary is

Corollary 14. Let {fi} be a sequence of functions in L' (Q) that satisfy
o forallk, fr >0 a.e.

e sup, fQ fr < oo.
For a.e. © € Q, we set f(x) = likminf fr(x) < +oo. Then f € L' () and
— 00

/ f(z) dz < liminf/ fr da.
Q k—o0 Q

Theorem 15 (Dominated convergence theorem). Let {fr} be a sequence of
functions in L' (Q) that satisfy

o fr(x) — f(z) a.e. onQ,

e there exists a function g € L' (Q) such that for all k, we have |fx(z)| <
lg(x)] a.e. on Q.

Then f € L' () and || fx — fill,x — 0.

2.2 Change of variable

We denote the set of all n x n invertible real matrices by GL (n,R). With an
abuse of notation, if T : R™ — R" is an invertible linear transformation, we also

write 7' € GL (n,R) .
Theorem 16. Let T € GL (n,R).
1. IfAe L, then T (A) € L and |T (A)| = |det T||4].

2. If f : R® — R is measurable, then so is foT. If f > 0 or f € L' (R"),
then we have

f(z) dz = |det T f(Tz) dx.
R R
Theorem 17. Let 2 C R™ be open and let ® : Q — R™ be a C' diffeomorphism.
1. If A C Q is measurable, then so is ® (A) and

1 (A)] :/A|detD<I>\(x) da.

2. If f : Q — R is measurable, then so is fo®. If f >0 or f € L*(Q), then
we have

/ f(z) dz = / fo®(z)|det DP|(x) du.
2($2) Q



2.3 Product measures

Let (21, My, 1) and (22, Mo, us) be two measure spaces that are o-finite. One
can then define in a standard way the structure of a complete measure space
(2, M, ) on the Cartesian product = Q; x Qo. The product measure so
obtained is often denoted by p = p1 X po.

There are two cases of product measures that are of particular interest to
us. The first is the obvious one. It is suggested both by the fact that for any
two m,n € N, we have R™*t" = R™ x R" and also by the heuristic notions like
‘area = length x width’, ‘volume = cross-sectional area x height = length X
width x height’ etc. For stating the result, we would switch to writing p,, as
the n-dimensional Lebesgue measure and £,, as the Lebesgue o-algebra on R™.

Proposition 18. The complete measure space on the Cartesian product cor-
responding to the measure spaces (R™, Ly, um) and (R™, Ly, py) is precisely
(Rm+na Lntn, ,Um-‘rn) .

The next important product measure situation is the polar co-ordinate for-
mula. This essentially depends on two facts. The first is that the Lebesgue
measure of a point is zero and thus for integration, R™ and R™ \ {0} are the
same. The second fact is that R™\{0} can be bijectively mapped into a Cartesian
product. Let S"~! = {z € R" : |z| = 1} be the unit sphere. For € R\ {0},
let us use the notation .

§=-—eS" L
||
Then the map
®:R™\ {0} = (0,00) x S"~!

given by
® (z) = (|f, )

is a continuous bijection with a continuous inverse. Thus, the n-dimensional
Lebesgue measure p,, on R™ ( more precisely, its restriction to R™\ {0} ) induces
a complete measure m on the Cartesian product (0, 00) x S*~1 in a natural WayE|
Now, as one can guess, there exist two essentially unique measures p and ¥ on
(0,00) and S™~! respectively, so that m = p x 3. In fact, by scaling properties
of p,, one can show that p can only be given by

pla) = [
A

where, as the notation indicates, the integration is performed with respect to
the one dimensional Lebesgue measure. Thus we have

1 One way to do it is by defining
m(A) = un (@71 (A)) for all Borel sets A

and then completing the Borel measure so obtained.



Proposition 19 (Polar coordinate formula). There exists a complete measure
Y ( essentially unique ) on S"~! such that for any f : R"™ — R measurable with
either f is nonnegative or f € L* (R™), we have

f(z) de = / flry)r™ 1 d (y) dr.
R 0 S§n—1
Now we turn to the question of when we can permute the order of the

integrals.

Theorem 20 (Fubini theorem). Let (Q1, My, u1) and (Q2, Mo, us) be two com-
plete measure spaces. Let f: Q1 X Qo — R be integrable in Q = Q1 X Qo. Then

x> f(x,y)  is pi-integrable in Qq for ps-almost all y € Qo,
y— f(x,y) is pa-integrable in Qo for pq-almost all x € 4.

Furthermore,
T f(z,y) dus  is up-integrable in Qy,
Qo

Y f(z,y) dur  is pa-integrable in Qs
Q

and we have the equality

/Mz F,y) d (i X ) = /Q ( [ o dm> a
:/< o, 1Y d/“) dpz. (@)

Theorem 21 (Tonelli theorem). Let (1, My, 1) and (Qa, Ma, ps) be two com-
plete o-finite measure spaces. Let f : Q1 X Qo — R be a nonnegative measurable
function. Then holds and thus the individual integrals are either all finite
or all infinite.

Combining the two results above, we obtain a useful version which is usually
called the Fubini-Tonelli theorem.

Theorem 22 (Fubini-Tonelli theorem). Let (21, M1, p1) and (Qa, Ma, ) be
two complete o-finite measure spaces. Let f : Q1 x Qo — R be a measurable
function. Then

[ vl agnxm = [ ([ 5G] de)
:/92 </91 | f(z,9)] dm) dpto. 2)



Further, if any one of the integrals is finite, so are the other two and we have
the following equality between finite signed integrals

/lez flr,y) d(pun x po) = /Q1 < N f(x,y) dm) Ay
= /92 ( o, f(x,y) d/h) dps. (3)

2.4 Differentiation

An integrable function is ‘approximately continuous’ at almost every point.

Theorem 23 (Lebesgue differentiation theorem). Let f € L}, (R™). Then for
a.e. zg € R™, we have

1
][B(l’oﬂ“) S {e) do = W B(zo,) J (@) de = f(xo) asr —0+.

Moreover, for a.e. oy € R™,
][ |f () = f (zg)] dz — 0 asr —0+.
B(zo,7)

For a given f, the points xg € R™ for which the conclusions of the theorem
holds are called Lebesgue points of f.

3 L? spaces

3.1 Support of a continuous function

Definition 24. Let f : R™ — R be continuous. Then the support of f, denoted
by supp f, is defined as the closure of the set where f is nonzero. More precisely,

supp f :=={zx € R*: f(z) # 0}.

The definition of support for functions defined on an open proper subset of
of R™ is superficially the same, but has an important difference.

Definition 25. Let Q C R™ be open and let f : Q — R be continuous. Then
the support of f, denoted by supp f, is defined as the closure in the subspace
topology of Q of the set where f is nonzero. More precisely,

supp f = (2 €92 F(2) £0]

Note that when 2 is a proper subset of R™, there is a crucial difference from
the earlier definition. Since (Q is always closed in the subspace topology of €,
the support of any function which vanish nowhere in € is Q itself and is thus
not a closed set R”.



Definition 26. Let f : R™ — R be continuous. [ is said to be compactly
supported, denoted f € C.(R™) if supp f is a compact subset of R™. If f is
moreover C* for some k € N or C*® and has compact support, we write f €
Ck (R™) or f € C (R"), respectively.

Similarly, if Q@ C R™ is open and let f : Q — R is continuous, then f is
said to be compactly supported in €2, denoted f € C. () if supp f is a compact
subset of R™. As before, if f is moreover C* for some k € N or C™ and has
compact support in €, we write f € C* (Q) or f € C (), respectively.

Although the definition for Q and R™ looks exactly the same, since the
definition of support differes, once again there is a crucial difference when
is a proper subset of R™. Since 2 C R™ is open, one can deduce that if f is
compactly supported in €2, the support of f is a closed set in R™ and hence
must be strictly contained in Q. Hence f must vanish not only on 0f2, but in a
neighborhood of 92 as well.

3.2 Basic definitions and properties of L” spaces

Definition 27. Let Q C R™ be an open set and 1 < p < oo. We say that a
measurable function u : Q — R belongs to LP (Q) if

lull = (/ @) dw)p if1<p<oo

inf{a:|u(z)|<aae inQ} ifp=oco

is finite. As above, if u:Q — RN, u= (ul,--- ,uN), is such that u* € LP (),
for everyi=1,--- | N, we write u € LP (Q;]RN).

Definition 28. Let Q@ C R™ be an open set and 1 < p < co. We say that a
measurable function u : Q — R belongs to LT (Q) if we have

loc

/ lu (z)|? dx < oo for any compact K C €.
Q

In the following, we let p’ be the conjugate exponent of p. It is defined by
1 1
-4 — = 1 = p/ — L
p—1

with the convention that if p = 1, respectively p = oo, then p’ = co, respectively
p’ = 1. Now we summarize the most important properties of L? spaces that we
need.

Theorem 29. Let Q C R™ be open and 1 < p < oc.

(i) |-l ;» is @ norm and L? (), equipped with this norm, is a Banach spaCtﬂ.

2A Banach space is a normed linear space which is complete as a metric space ( with the
metric induced from the norm ).

10



The space L* (Q) is a Hilbert spaceﬂ with inner product given by
(ujv)y = / u(z)v(x)de.
Q
(ii) Hélder inequality asserts that if u € LP (Q) and v € LP (Q) where
1/p+1/p =1, then uv € L* (Q) and moreover
luvll g < flullpe vl e -

(iii) Young’s inequality asserts that if u € LP (Q) and v € L¥ (Q) where
1/p+1/p' =1, then uwv € L* (Q) and moreover

1 ’
lwvlls < 2 lullZe + v vl

(iv) Young’s inequality with ¢ asserts that for every € > 0, there exists a
constant C. > 0 such that for any u € L (Q) and v € LP (Q) where
1/p+1/p' =1, we have

]|y < ellullfs + Ce vl -
v) Minkowski inequality asserts that
Y

llu+ll o < llullpe + ll0llLs -

(vi) Riesz theorem: the dual space of LP, denoted by (LP)", can be identified
with LP () where 1/p+1/p’ =1 provided 1 < p < oco. More precisely, if
@ € (LP)" with 1 < p < oo, then there exists a unique u € LP" so that

(i f) =0 (f) :/Qumf(x)dx, Vel

and moreover
lall o = Il oy -

As a consequence, for 1 < p < 0o, there is an alternative characterization
of the LP norm.

llul|,» = sup /uv: sup /uv.
veL? vel?

lloll pr <1 lloll L =1

(vii) LP is sepamblfﬁ if 1 <p < oo and reflezive if 1 < p < 0.

3A Hilbert space is an inner product space which is complete as a metric space ( with
the metric induced from the inner product ).
4A topological space is called separable if it has a countable dense subset.

11



(viii) Let1 < p < co. The piecewise constant functions (also called step functions
if @ C R) or the C° () functions are dense in LP. More precisely, if
u € LP(Q) then there exist u, € C°(Q) (or u, piecewise constant) so
that

i uy — ul , = 0.

Remark 30. (i) In the case p = 2 and hence p' = 2, Hélder inequality is
nothing but Cauchy-Schwarz inequality

1/2 1/2
fuolls <l ol e [l < ([a2) ([ 2)
Q Q Q

(ii) In Riesz theorem the result is false if p = 0o (and hence p' =1).
(#5i) In the following, we always make the identification (LP)" = L¥ . Sum-
marizing the results on duality we have

(LPY =L if1<p< o,
(LZ)/ _ [127 (Ll)/ — [/:)O7 Ll ; (Loo)/

(iv) The meaning of LP reflexive is that the bidual of LP, (L?)", can be
identified with LP.

(v) The last statement in the theorem is false if p = co.

3.3 Convolution
Definition 31. Let f,g: R™ — R be measurable functions. Then the convolu-
tion of f and g, denoted f * g, is defined as

frg(x):= A fle—y)g(y) dy,

for all x € R™ for which the integral exists.

Proposition 32. Let f,g,h : R — R be measurable functions. Assuming all
the integrals in question exists, we have

1. fxg=gxf.

2. (fxg)xh=fx(gxh).

3. supp (f x g) C supp f + supp g, where the sum on the right means the set
{r+y:xesuppf, y €Esuppg}.

Theorem 33 (Young’s inequality for convolutions). Let 1 < p,q,r < oo such
that

1 1 1
S S=41
rp q r
If f € LP (R™) and g € LY (R™), then fx g € L" (R™) and we have

|| f = 9||Lr(Rn) < ”fHLp(Rn) ||9||Lq(Rn) .

12



Proposition 34. If f € L' (R") and g € C* (R") with D%g € L*> (R") for
each multiindex o with |a| < k, then f x g € C* (R™) and we have

D (fxg)=fxD%
for each multiindex o with |a| < k.

Proposition 35. If f € L}, (R") and g € C¥ (R") then f x g € C¥(R") and
we have

D*(fxg)=f*D"

for each multiindex o with || < k.

3.4 Mollifiers

Definition 36. A function ¢ : R™ — R is called a smoothing kernel or a
mollifying kernel if

(i) ¢ € C°(R"),
(i) supp ¢ C B(0,1),
(iii) ¢ > 0 and ¢ # 0,

(iv) For some finite nonzero real number a € R with a > 0, we have

¢ (z) dz = a.
Rn

Given a smoothing kernel ¢, the sequence of mollifiers corresponding to ¢ is
the sequence {@r} ey C C° (R™) where

o (x) = 216"(1) (kx)  for every xz € R"

for every k € N.
A typical example of such a smoothing kernel is provided by the function
1
T (-2 :
6(z)=14°¢ ( ) %f lz| <1,
0 if |z| > 1.
Theorem 37. Let {¢r},cy C C° (R™) be a sequence of mollifiers. Then

(i) Let 1 < p < oo and let f € LP (R™). Then fr := ¢ x f € C°° (R™) for
every k € N and we have

||fk_f||Lp(Rn) — 0 as k — oo.

13



(ii) Let f € C(R™). Then fr := ¢ x f € C°° (R™) for every k € N and

fu — f  uniformly  on any compact subset K C R".

(iii) Let f € C* (R™) for some k € N. Then f, := ¢4 * f € C™ (R™) for every
s €N and

D%fy — Df  uniformly on any compact subset K C R™

for any multiindex o with |a| < k.

The process of constructing the sequence of functions fr := ¢p * f, where
{#r}pen € C (R™) is a sequence of mollifiers, is called mollifying f or simply
mollification.

3.5 Weak convergence in LP

We now turn our attention to the notions of convergence in LP spaces. The
natural notion, called strong convergence, is the one induced by the ||-||;, norm.
We also often need a weaker notion of convergence known as weak convergence.
We now define these notions.

Definition 38. Let 2 C R™ be an open set and 1 < p < co.
(i) A sequence w, is said to (strongly) converge to u in LP if u,, u € LP
and if
Jim =l =0,
We denote this convergence by u, — u in LP.

(ii) If 1 < p < oo, we say that the sequence u, weakly converges to u in LP
if u,, uw € LP and if

lim [ [u, (@) —u(2)]p(@)de =0, Vee LY (Q).
1% oo Q
This convergence is denoted by u, — wu in LP.

(iit) If p = oo, the sequence u,, is said to weak * converge to u in L™ if u,,
u € L and if

lim [ [u, (z) —u(x)]p(x)de =0, VeoecL'(Q)

vV—00 0

and is denoted by: u, Xowoin Lo°.

(iv) Let {u,} be a sequence of measurable functions on Q into R and let
u: Q — R be a measurable function in Q. The sequence {u,} converges in
measure to u , if for any e >0

limp ({x € Q: |u,(z) —u(x)| >e}) =0.

14



Remark 39. (i) We speak of weak x convergence in L™ instead of weak conver-
gence, because as seen above the dual of L™ is strictly larger than L'. Formally,
however, weak convergence in LP and weak * convergence in L™ take the same
form.

(ii) The limit (weak or strong or in measure) is unique.

(iii) It is obvious that
' uy, = uin LP ifl<p<oo
u, »uin LP = . _
uy, = u i L if p=oo.

If Q has finite measure, then u,, — w a.e. implies u, — u in measure. If u, — u
in measure, then there is a subsequence u,, that converges to u a.e.

Theorem 40. Let Q& C R™ be a bounded open set. The following properties
then hold.

(i) If u, = w in L™, then u, — u in LP, Y1 < p < oc.

(ii) If 1 < p < oo and u, — u in LP, then

||u||Lp = yl.g{.lo ”uVHLp .

(iii) If 1 < p < oo and if u, — w in LP, then there exists a constant v > 0
so that
lunllye <7 and [ully, < lmninf .,

The result remains valid if p = co and if u, — w in L.

(iv) If 1 < p < oo and if there exists a constant v > 0 so that ||u, |, <7,
then there exist a subsequence {u,,} and u € L? so that

u,, —u in LP.

i

The result remains valid if p = oo, the conclusion is then u,, 2w in Le°.

(v) Let 1 < p < oo and u, — u in LP, then there exist a subsequence {u,,}
and h € LP such that

Uy, = u a.e. and |uy,,| < h a.e.

Remark 41. (i) Comparing (i) and (iii) of the theorem, we see that weak con-
vergence ensures the lower semicontinuity of the norm, while strong convergence
guarantees its continuity.

(ii) The most interesting part of the theorem is (iv). We know that in R™,
Bolzano- Weierstrass theorem ascertains that from any bounded sequence we can
extract a convergent subsequence. This is false in LP spaces (and more generally
in infinite dimensional spaces); but it is true if we replace strong convergence
by weak convergence.

(iii) The result (iv) is, however, false if p = 1; this is a consequence of
the fact that L' is not a reflexive space. To deduce, up to the extraction of a
subsequence, weak convergence, it is not sufficient to have ||u, |1 <y, we need
a condition known as “equiintegrability”.

15



Part (ii) has a partial converse.

Theorem 42 (Radon-Riesz). Let 1 < p < oo and let uy, : @ — R be a sequence
in LP (Q) converging weakly to uw € LP () and

lunll o) = llullLo(q) -

Then
Up — U in LP (Q).

There is another converse which works even when p = 1.

Theorem 43. Let 1 < p < 0o and let uy, : Q@ — R be a sequence in LP (Q) such
that u,, — u a.e and

[tnll o) = llull poq) -
Then

Up —> U in LP (2).

We now turn to Riemann-Lebesgue theorem which allows one to easily con-
struct weakly convergent sequences that do not converge strongly. This theorem
is particularly useful when dealing with Fourier series (there u(xz) = sinx or
CoS ).

Theorem 44 (Riemann-Lebesgue theorem). Let 1 < p < oo and u € LP (Q)
where Q = [[;_; (a;,b;). Let u be extended by periodicity from Q to R" and
define

uy () =u(va) and ugln/gu(:c)d:r

then u, — T in LP if 1 < p < o0 and, if p = 00, U, — T in L.
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