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1 Heat equation

1.1 Representation formulas for IVP

1.1.1 Heat Kernel

Consider the following IVP for the heat equation in n dimensions{
ut −∆u = 0 in Rn × (0,∞) ,

u = g on Rn × {t = 0} .
(1)

Taking the Fourier transform with respect to the space variable x ∈ Rn, for a.e.
ξ ∈ Rn, we obtain the following IVP for an ODE

d

dt
û+ |ξ|2 û = 0 for t ∈ (0,∞) ,

û (0, ξ) = ĝ (ξ) for t = 0.

The ODE of course is easily solved. We have

dû

û
= − |ξ|2 dt.

Integrating from t = 0 to t = t, we obtain

ˆ û(t)

û(0)

dû

û
= − |ξ|2

ˆ t

0

dt,

This implies

log
û (t)

û (0)
= − |ξ|2 t
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Thus, we deduce

û = ĝe−t|ξ|
2

.

Hence, at least formally, the solution to (1) is given by

u = (û)
ˇ

=
(
ĝe−t|ξ|

2
)ˇ

.

Now suppose we can find a function E such that

Ê (ξ) =
1

(2π)
n
2
e−t|ξ|

2

.

Then this means we can rewrite our solution as

u =
(
ĝe−t|ξ|

2
)ˇ

=
(

(2π)
n
2 Êĝ

)ˇ

=
(

[E ∗ g]
ˆ
)ˇ

= E ∗ g.

Can we find such a function E? Indeed we can. We just use the Fourier inversion
formula and compute

E =
(
Ê
)ˇ

=
1

(2π)
n

ˆ
Rn
ei〈x,ξ〉−t|ξ|

2

dξ =
1

(2π)
n

(π
t

)n
2

e−
|x|2
4t =

1

(4πt)
n
2
e−
|x|2
4t .

Thus, we deduce,

u (x, t) =
1

(4πt)
n
2

ˆ
Rn
e−
|x−y|2

4t g (y) dy for x ∈ Rn, t > 0. (2)

So far, what we have done is that we obtained a candidate function u given by
(2), for the IVP for the Heat equation. But now we show that we have actually
obtained a strong solution.

Theorem 1 (Representation formula for IVP for the homogeneous heat equa-
tion). Let g ∈ L∞ (Rn) ∩ C (Rn) and let u be defined by (2). Then

(i) u ∈ C∞ (Rn × (0,∞)) ,

(ii) u satisfies

ut −∆u = 0 in Rn × (0,∞) ,

(iii) and we have

lim
(x,t)→(x0,t)

u (x, t) = g (x0) for every x0 ∈ Rn.

In other words, u given by (2) is a strong solution of the IVP (1), which is C∞

for any t > 0 and any x ∈ Rn.
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Proof. Since E is easily seen to be C∞ for any t > 0 and any x ∈ Rn, (i) is
immediate. (ii) can be verified easily by noting that away from t = 0, E itself
solves the Heat equation. For (iii), fix x0 ∈ Rn and ε > 0. Now by continuity of
g, choose δ > 0 such that

|g (y)− g (x0)| < ε

2
for all y ∈ Bδ (x0) .

Recall that we have seen how to calculate the integral of a Gaussian before.
Using the same technique, it is easy to verify that for any t > 0, we haveˆ

Rn
E (x− y, t) dy = 1.

Now for any x ∈ Bδ/2 (x0) and any t > 0, we have

|u (x, t)− g (x0)| =
∣∣∣∣ˆ

Rn
E (x− y, t) [g (y)− g (x0)] dy

∣∣∣∣
≤
ˆ
Bδ(x0)

E (x− y, t) |g (y)− g (x0)| dy

+

ˆ
Rn\Bδ(x0)

E (x− y, t) |g (y)− g (x0)| dy

:= I1 + I2.

Clearly,

I1 ≤
ε

2

ˆ
Bδ(x0)

E (x− y, t) dy ≤ ε

2

ˆ
Rn
E (x− y, t) dy ≤ ε

2
.

Also, we have

I2 ≤ 2 ‖g‖L∞(Rn)

ˆ
Rn\Bδ(x0)

E (x− y, t) dy ≤ C

t
n
2

ˆ
Rn\Bδ(x0)

e−
|x−y|2

4t dy.

We need to show that the last expression converges to 0 as t→ 0, independently
of x ∈ Bδ/2 (x0) . The trick is to note that we can actually replace |x− y| by
1
2 |x0 − y| . Indeed, since x ∈ Bδ/2 (x0) and y /∈ Bδ (x0) , we have

|y − x0| ≤ |y − x|+ |x− x0| ≤ |y − x|+
δ

2
≤ |y − x|+ 1

2
|y − x0| .

This implies

1

2
|y − x0| ≤ |y − x| .

Thus, we deduce

I2 ≤
C

t
n
2

ˆ
Rn\Bδ(x0)

e−
|x−y|2

4t dy

≤ C

t
n
2

ˆ
Rn\Bδ(x0)

e−
|x0−y|

2

16t dy → 0 as t→ 0 + .

The result now follows easily.
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Because of the importance of the function E, we give it a name.

Definition 2 (Heat Kernel). The function

Φ (x, t) :=


1

(4πt)
n
2
e−
|x|2
4t if x ∈ Rn, t > 0,

0 if x ∈ Rn, t < 0,

is called the Heat kernel or the Gaussian kernel of dimension n. This is
also the fundamental solution for the Heat equation.

1.1.2 Duhamel’s principle

In this section, we study Duhamel’s principle. We do not need a proof of
Duhamel’s principle as we can verify by direct computation that the solution
of the inhomogeneous problem obtained by Duhamel’s principle is a solution.
However, it is still useful to understand why it works abstractly.

Theorem 3 (Duhamel’s principle for ODEs). Consider the linear ODE
d

dt
U = aU + f (t) t ∈ (0,∞),

U (0) = 0,
(3)

where U : [0,∞) → R is the unknown function, a ∈ R and f : [0,∞) → R is a
given continuous function. Then the solution of (3) is given by

U (t) =

ˆ t

0

Us (t) ds,

where Us : (s,∞)→ R solves
d

dt
Us = aUs t ∈ (s,∞),

Us (s) = f (s) .
(4)

Proof. The proof is simple, since we can write down the solution operator for
the homogeneous linear equation explicitly. More precisely, we know that

V (t) = ζeat

solves the equation 
d

dt
V = aV t ∈ (0,∞),

V (0) = ζ.
(5)

Thus, for any 0 ≤ s ≤ t, we have

V (t) = ζeat = ζea(t−s)eas = ea(t−s)V (s) . (6)
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Using this for (4), we derive

Us (t) = ea(t−s)f (s) .

Now we define

U (t) =

ˆ t

0

Us (t) ds =

ˆ t

0

ea(t−s)f (s) ds.

Then we have

d

dt
U =

d

dt

[ˆ t

0

ea(t−s)f (s) ds

]
= ea(t−s)f (s)

∣∣
s=t

+

ˆ t

0

d

dt

[
ea(t−s)f (s)

]
ds

= f (t) + a

[ˆ t

0

ea(t−s)f (s) ds

]
= f (t) + aU.

This proves the result.

Now, using Fourier transform in x ∈ Rn to reduce the heat equation to an
ODE, we now have the following, whose proof is left as an exercise.

Theorem 4 (Duhamel’s principle for the heat equation). Consider the homo-
geneous initial value problem{

ut (x, t)−∆u (x, t) = f (x, t) in Rn × (0,∞),

u = 0 on Rn × {t = 0} .
(7)

where u : Rn × [0,∞)→ R is the unknown and f : Rn × [0,∞)→ R is a given
( smooth enough ) function. Then the solution of (7) is given by

u (x, t) =

ˆ t

0

us (x, t) ds,

where us : Rn × (s,∞)→ R solves{
ust −∆u = 0 in Rn × (s,∞),

us = f on Rn × {t = s} .
(8)

1.1.3 Representation formula for inhomogeneous IVP

Notation 5. Let f : Rn× [0,∞)→ R be a real valued function, which we write
as f = f (x, t) . We say f ∈ C2

1 (Rn × (0,∞)) if

f,
∂f

∂t
,
∂f

∂xi
,
∂2f

∂xi∂xj
∈ C (Rn × (0,∞)) for all 1 ≤ i, j ≤ n.
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Using the Duhamel’s principle, we can now easily deduce that the following.

Theorem 6. Let g ∈ C (Rn) ∩ L∞ (Rn) and f ∈ C2
1 (Rn × (0,∞)) and f has

compact support in Rn × [0,∞), i.e. f ∈ Cc (Rn × [0,∞)) . Define

u (x, t) :=
1

(4πt)
n
2

ˆ
Rn
e−
|x−y|2

4t g (y) dy

+

ˆ t

0

1

(4π (t− s))
n
2

ˆ
Rn
e−
|x−y|2
4(t−s) f (y, s) dyds,

Then we have

(i) u ∈ C2
1 (Rn × (0,∞)) ,

(ii) u satisfies

ut (x, t)−∆u (x, t) = f (x, t) for all x ∈ Rn, t > 0.

(iii) lim
(x,t)→(x0,0+)

u (x, t) = g (x0) for every x0 ∈ Rn.

The conclusion of the theorem of course means that u given by the formula
furnishes a strong solution to the initial value problem{

ut −∆u = f (x, t) in Rn × (0,∞),

u = g on Rn × {t = 0} .

This can also be verified directly.

1.2 Mean value property

1.2.1 Heat Balls

We want to now show a mean value property for the heat equation. However, the
formula is much more complicated as the relevant sets are no longer a sphere or
balls. To discover what the sets should be, we recall the mean value formula for
the harmonic functions and note that the reason balls appear in the mean value
formula is because balls are the superlevel sets of the fundamental solutions. So
along the same lines, we define the heat ball.

Definition 7 (Heat ball). Let x ∈ Rn and t ∈ R and r > 0. We define the heat
ball of radius r ‘centered’ at (x, t) as

E (x, t; r) :=

{
(y, s) ∈ Rn+1 : s ≤ t,Φ (x− y, t− s) ≥ 1

rn

}
.

This is a bounded region of the space-time whose boundary is the level set
of the fundamental solution given by

Φ (x− y, t− s) =
1

rn
.
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Now a natural question that might arise is that superlevel sets could have been
defined by {

(y, s) ∈ Rn+1 : s ≤ t,Φ (x− y, t− s) ≥ c
}

for any constant c. Why do we take c = 1/rn to define heat balls? The reason,
once again, is the parabolic scaling. Note that for heat ball of radius r, the
constant should of course, depend on r. But what should the exact nature of
the dependence be? To figure this out, we notice that

Φ
(
r (x− y) , r2 (t− s)

)
=

1

rn
Φ (x− y, t− s) for all r > 0.

Thus, c = 1/rn is the correct dependence which ensures our heat balls respects
the parabolic scaling. To figure out how the sets look like, we note that for any
fixed s < t, we have

|x− y|2 = 4n (t− s) log

(
r

[4π (t− s)]
1
2

)
,

which is a constant. Thus, each fixed ‘time slice’ is a ball in Rn, but the radius
varies in a rather complicated manner. However, it is not difficult to show that

lim
s→t−

4n (t− s) log

(
r

[4π (t− s)]
1
2

)
= 0.

Thus the so-called ‘center’ (x, t) is actually at the top, in fact at the center
of the top of what looks like an ellipsoid and not somewhere in the middle at
all. The heat ball is actually contained inside a rescaled parabolic cylinder. We
leave it as an exercise to show

E (x, t; r) ⊂
{

(y, s) ∈ Rn+1 : |y − x| ≤
√

n

2πe
r, t− r2

4π
≤ s ≤ t

}
.

1.2.2 Adjoint heat equation and backward heat kernel

Now we come to the question of how the mean value formula should look like.
To have some idea, we consider any bounded open region D ⊂ Rn+1. Let u, v ∈
C∞c (D) . Integrating by parts, we deduce

ˆ
D

(ut −∆u) v =

ˆ
D
u (−vt −∆v) .

The operator
H∗ := −∂t −∆

is called the adjoint heat operator or sometimes also called the backward
heat operator. The reason for this last name is that formally, the operator
is the heat equation in the variable (x,−t). This analogy is actually an useful
guideline. Let us define

8



Definition 8 (Backward Heat Kernel). The function

Φback (x, t) :=


1

(4π |t|)
n
2
e
|x|2
4t if x ∈ Rn, t < 0,

0 if x ∈ Rn, t > 0,

is called the backward heat kernel.

Now arguing exactly as in Theorem 1, we can establish

Theorem 9. Let g ∈ L∞ (Rn) ∩ C (Rn) and let u be defined by

u (x, t) :=

ˆ
Rn

Φback (x− y, t) g (y) dy.

Then

(i) u ∈ C∞ (Rn × (−∞, 0)) ,

(ii) u satisfies

−ut −∆u = 0 in Rn × (−∞, 0) ,

(iii) and we have

lim
(x,t)→(x0,0−)

u (x, t) = g (x0) for every x0 ∈ Rn.

In other words, u is a strong solution to the following problem{
−ut −∆u = 0 in Rn × (−∞, 0) ,

u = g on Rn × {t = 0} .

Now note that the heat ball can also be written in terms of the backward
heat kernel. Indeed, we have

Φback (x, t) =
1

(4π |t|)
n
2
e
|x|2
4t

=
1

(4π (−t))
n
2
e−

|x|2
4(−t)

= Φ (x,−t) for any x ∈ Rn and any t < 0.

Thus, we can write

E (x, t; r) :=

{
(y, s) ∈ Rn+1 : s ≤ t,Φback (x− y, s− t) ≥ 1

rn

}
.
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1.2.3 Parabolic Greens identity

Now, for the rest we assume (x, t) = (0, 0). We can always get back to (x, t) by
translation. Now, our plan is to derive a ‘mean value inequality’ of the form

u (0, 0) ≤
ˆ
E(0,0;r)

w (y, s, r)u (y, s) dyds,

for some suitable weight function w (y, s, r) . Once again, let D ⊂ Rn be an ope,
bounded region of space-time with smooth boundary and let u, v ∈ C∞

(
D
)
.

Integrating by parts, we deduce the Green’s identity

ˆ
D

(ut −∆u) v =

ˆ
D
u (−vt −∆v) +

ˆ
∂D

[
τuv − ∂u

∂ν
v + u

∂v

∂ν
v

]
dΣ∂D, (9)

where (ν, τ) denotes the exterior unit normal to ∂D, i.e. τ denotes the t-
component and ν denotes the x-component of the normal and dΣ∂D is the
‘surface measure’ on ∂D.

1.2.4 Heat mean value property

Now, since in the heuristics of distributions,

H∗Φback = δ(0,0) in Rn+1,

if we formally substitute v = Φback in (9), we would have

ˆ
D
u (−vt −∆v) ≈ δ(0,0) [u] = u (0, 0)

for any domainD with (0, 0) ∈ D. In particular, this would hold, at least morally,
if D = E (0, 0; r) . However, the boundary integral will complicate issues. Also,
at any rate, we want to get rid of the boundary integral altogether. So we start
fine-tuning our choice of v. Observe that we have

Φback (y, s) =
1

rn
for any (y, s) ∈ ∂E (0, 0; r) .

Thus, if we choose

v = Φback −
1

rn
,

then we still have
H∗v = δ(0,0) in Rn+1,

but we would also have
ˆ
∂E(0,0;r)

[
τuv − ∂u

∂ν
v

]
dΣ∂E(0,0;r) = 0,
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as v vanishes on ∂E (0, 0; r) . But the term
ˆ
∂E(0,0;r)

u
∂v

∂ν
dΣ∂E(0,0;r) =

ˆ
∂E(0,0;r)

u 〈ν,∇xv〉dΣ∂E(0,0;r)

still remains. We now want to further modify our choice of v to get rid of this
term, without undoing the good work we have done so far. To this end, we
select

v = Φback −
1

rn
+ c log (rnΦback) (10)

for some c ∈ R. Observe carefully that since Φback ≡ 1/rn on ∂E (0, 0; r) , the
last term also vanishes on ∂E (0, 0; r) for any c ∈ R. Now, we compute the
spatial gradient. We have,

∇v = ∇Φback + c

(
rn∇Φback

rnΦback

)
=

(
1 +

c

Φback

)
∇Φback.

Thus, we deduce

∇v = (1 + crn)∇Φback on ∂E (0, 0; r) .

Hence, we can choose c = −1/rn to get ∇v to vanish on ∂E (0, 0; r) . Thus, our
final choice for v is

v = Φback −
1

rn
− 1

rn
log (rnΦback) . (11)

However, though we managed to get rid of all the boundary terms, the price to
pay is that we no longer have H∗v = δ(0,0). Instead, we now obtain

H∗v = H∗Φback −
1

rn
H∗ [log (−rnΦback)]

= H∗Φback +
1

rn
∂t [log (−rnΦback)] +

1

rn
∆ [log (−rnΦback)] . (12)

We compute

∂t [log (−rnΦback)] = ∂t

[
log rn − n

2
log (4π (−t)) +

|x|2

4t

]

= − n
2t
− |x|

2

4t2
.

Similarly, we deduce

∆ [log (−rnΦback)] = ∆

[
log rn − n

2
log (4π (−t)) +

|x|2

4t

]

= ∆

[
|x|2

4t

]
= div

( x
2t

)
=

n

2t
.
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Plugging these last two expressions back in (12), we arrive at

H∗v = H∗Φback −
1

rn
|x|2

4t2
.

Substituting formally into (9), we have

ˆ
E(0,0;r)

(ut −∆u) v =

ˆ
E(0,0;r)

uH∗v = u (0, 0)− 1

4rn

ˆ
E(0,0;r)

|x|2

t2
u (x, t) dxdt

Now note that rnΦback ≥ 1 in E (0, 0; r) . Putting z = log (rnΦback) , we can
write

rnv = ez − 1− z.

Since f (z) = ez − 1 − z ≥ 0 for all z ≥ 0, we see immediately that v ≥ 0 in
E (0, 0; r) . Thus, if ut −∆u ≤ 0, we obtain

u (0, 0)− 1

4rn

ˆ
E(0,0;r)

|x|2

t2
u (x, t) dxdt ≤ 0.

This yields the mean value formula, at least formally. But the heuristic with
Dirac delta distribution can be made rigorous easily. One applies the Green’s
identity with the same choice of u and v, but with the heat ball truncated at
the top to remove the singularity. More precisely, we take the domain to be

Dε =

{
(y, s) ∈ Rn+1 : s ≤ −ε,Φ (−y,−s) ≥ 1

rn

}
.

for ε > 0 small. Since the singularity is now outside the domain, the integral

ˆ
Dε
uH∗Φback = 0 for every ε > 0.

But there would be non-zero boundary terms corresponding to the top boundary{
(y, s) ∈ Rn+1 : s = −ε,Φ (−y,−s) ≥ 1

rn

}
.

It is easy to check that these boundary integrals converge to u (0, 0) as ε→ 0+.
Details are left to the reader. These arguments establish the following.

Theorem 10 (The mean value inequality). Let u ∈ C2
1 (ΩT ) satisfy ut−∆u ≤ 0

in ΩT . Then

u (x, t) ≤ 1

4rn

ˆ
E(x,t;r)

u (y, s)
|x− y|2

(t− s)2 dyds

for all heat balls E (x, t; r) ⊂ ΩT .
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1.3 Maximum principle

1.3.1 Strong and weak maximum principle

Now we can show the strong maximum principle for the heat equation.

Theorem 11 (Strong maximum principle). Let u ∈ C2
1 (ΩT ) ∩ C

(
ΩT
)

satisfy

ut −∆u ≤ 0 in ΩT .

Then if Ω is connected and there exists a point (x0, t0) ∈ ΩT such that

u (x0, t0) = max
ΩT

u,

then u is constant in Ωt0 .

Remark 12. Note that the solution is constant only in all earlier times, but
not necessarily after.

Proof. Let
M = u (x0, t0) = max

ΩT

u.

Then we choose r > 0 sufficiently small such that E (x0, t0; r) ⊂ ΩT . Then by
the mean value inequalities,

M = u (x0, t0) ≤ 1

4rn

ˆ
E(x0,t0;r)

u (y, s)
|x0 − y|2

(t0 − s)2 dyds

≤ M

4rn

ˆ
E(x0,t0;r)

|x0 − y|2

(t0 − s)2 dyds = M.

Thus, u ≡ M on E (x0, t0; r) . Now for any other point (z, t) ∈ Ωt0 , by con-
nectedness, we can join (z, t) with (x0, t0) by piecewise continuous line segment
paths where the time is decreasing and covering those paths by heat balls, we
have the result.

The strong maximum principle obviously implies the weak maximum prin-
ciple.

Theorem 13 (Parabolic weak maximum principle). Let u ∈ C2
1 (ΩT )∩C

(
ΩT
)

satisfy
ut −∆u ≤ 0 in ΩT .

Then

max
ΩT

u = max
ΓΩT

u.

13



1.3.2 Consequences of the maximum principle

1.3.3 Infinite propagation speed

As a consequence of the maximum principle, we can show the infinite prop-
agation speed property of the heat equations without using the fundamental
solution.

Theorem 14 (Infinite propagation speed). Let Ω ⊂ Rn be open, bounded,
smooth and connected. Let T > 0, g : Ω → R be a continuous nonnegative
function and u ∈ C2

1 (ΩT ) ∩ C
(
ΩT
)

satisfy
ut −∆u = 0 in ΩT ,

u = 0 on ∂Ω× [0, T ],

u = g on Ω× {t = 0} .

If g > 0 somewhere in Ω, then u > 0 everywhere in ΩT .

Proof. Since u satisfy the heat equation, it is also a supersolution of the heat
equation and thus satisfies the parabolic strong and the weak minimum prin-
ciple. But since g ≥ 0, we have

min
ΓΩT

u = 0.

Thus the parabolic weak minimum principle implies u ≥ 0 in ΩT . On the other
hand, if u (x, t) = 0 for some (x, t) ∈ ΩT , the parabolic strong minimum principle
would imply that

u ≡ 0 in Ωt.

But this would imply

u ≡ 0 on Ω× {t = 0} .

But this contradicts the fact that g > 0 somewhere in Ω.

Remark 15. This result of course also holds for the pure IVP and is much
easier to establish. This follows directly from the representation formula. Check
this.

1.3.4 Uniqueness via the maximum principle

The maximum principle also allows us to prove uniqueness results for the initial-
Dirichlet boundary value problems.

Theorem 16 (Uniqueness for the initial-Dirichlet boundary value problem).
Let Ω ⊂ Rn be open, bounded, smooth and connected. Let T > 0 and f :
ΩT → R, g : ΓΩT → R be continuous functions. Then there exists at most one

14



solution u ∈ C2
1 (ΩT ) ∩ C

(
ΩT
)

of the following initial-Dirichlet boundary value
problem {

ut −∆u = f in ΩT ,

u = g on ΓΩT .

Proof. If u, v ∈ C2
1 (ΩT )∩C

(
ΩT
)

are two solutions of the problem, then setting
w = u− v and applying the maximum principle to w and −w, we deduce that
we must have w = 0.

We can also show uniqueness for the Cauchy problem. However, the Cauchy
problem {

ut −∆u = 0 in Rn × (0,∞),

u = g on Rn × {t = 0} ,

actually admits infinitely many solutions and thus uniqueness does not hold
without additional conditions.

Example 17 (Tychonoff’s counterexample). Let α > 1 be a real number and
define

g (t) =

{
e−

1
tα if t > 0,

0 if t ≤ 0.

Now we define the function

u (x, t) =

∞∑
k=0

g(k) (t)

(2k)!
x2k.

We can check that the series in question converge uniformly for any bounded x
and real t > 0. Also, one can check that u satisfies

ut − uxx = 0 in R× (0,∞)

and

lim
t→0+

u (x, t) = 0 uniformly in x for any bounded x.

Thus, for n = 1, u is a nontrivial solution of the IVP{
ut −∆u = 0 in Rn × (0,∞),

u = 0 on Rn × {t = 0} .

Hence to ensure uniqueness, we need to impose additional conditions. One
can check that the Tychonoff’s solutions grow quite fast as |x| → ∞, so one way
to force uniqueness might be to impose growth conditions at spatial infinity.

15



Theorem 18 (Uniqueness for the initial value problem). Let T > 0, g ∈
C (Rn) and f ∈ C (Rn × [0, T ]) . Then there exists at most one solution u ∈
C2

1 (Rn × (0, T ]) ∩ C (Rn × [0, T ]) of the following initial value problem{
ut −∆u = f in Rn × (0, T ],

u = g on Rn × {t = 0} ,

that satisfies the growth estimate

|u (x, t)| ≤ Ceα|x|
2

for all x ∈ Rn, 0 ≤ t ≤ T, for some constants C,α > 0.

The theorem is an immediate consequence of the following weak maximum
principle.

Theorem 19 (Parabolic weak maximum principle in Rn). Let T > 0 and let
u ∈ C2

1 (Rn × (0, T ]) ∩ C (Rn × [0, T ]) satisfy

ut −∆u ≤ 0 in Rn × (0, T ].

Then if there exist constants C,α > 0 such that u satisfies the growth estimate

|u (x, t)| ≤ Ceα|x|
2

for all x ∈ Rn, 0 ≤ t ≤ T, then

sup
Rn×[0,T ]

u = sup
Rn

u (·, 0) .

Proof. The idea is to use the parabolic weak maximum principle for bounded
domains. But since we want to estimate the supremum of the function by the
supremum on the bottom part of the parabolic cylinder only, we need to apply
it to a function for which the values on the lateral boundary can be made small.
To do trhis, first we assume that T > 0 is small enough to satisfy

4αT < 1.

Then there exists β > 0 such that

4α (T + β) < 1.

Now pick ε > 0 and define

v (x, t) := u (x, t)− ε

(T + β − t)
n
2
e

|x|2
4(T+β−t) for any x ∈ Rn, 0 ≤ t ≤ T.

It is easy to check that

vt −∆v ≤ 0 in Rn × (0, T ].

16



Thus, for any radius r > 0, by applying the weak maximum principle to v in
the parabolic cylinder ΩT , where Ω = Br (0) , we deduce

max
ΩT

v = max
ΓΩT

v.

At the bottom part of the boundary, we have

v (x, 0) = u (x, 0)− ε

(T + β)
n
2
e
|x|2

4(T+β) ≤ sup
Br(0)

u (x, 0) .

But on the lateral part of the parabolic boundary ΓΩT , we have, by the growth
estimate

v (x, t) ≤ Ceα|x|
2

− ε

(T + β − t)
n
2
e

|x|2
4(T+β−t)

= Ceαr
2

− ε

(T + β − t)
n
2
e

r2

4(T+β−t) .

But since 4α (T + β) < 1, the second term with the negative sign has a higher
exponent. Hence the RHS tends to −∞ as r → ∞. thus, letting r → ∞, we
deduce

sup
Rn×[0,T ]

v ≤ sup
Rn

u (·, 0) .

But since ε > 0 is arbitrary, this implies the result if T is sufficiently small. If
T is not small enough, we subdivide the time interval into smaller ones, each
of which satisfy the smallness assumption and apply the result successively to
each one. This completes the proof.

1.4 Interior regularity of strong solutions

We now show that any strong solution of the heat equation is automatically
smooth in the interior of its domain. The circle of ideas are the same as in
the case of the Laplace equation. We first derive apriori estimates for smooth
solutions and then approximate any strong solution by smooth ones to derive the
regularity conclusion. As before, there is no circularity here. Since our estimates
are local, we need to use localization. To this end, we need to introduce a
notation.

Notation 20. For any (x, t) ∈ Rn×R and for any r > 0, the notation C (x, t; r)
stands for the closed circular cylinder radius r, height r2 and the top center point
(x, t), i.e.

C (x, t; r) :=
{

(y, s) : |x− y| ≤ r, t− r2 ≤ s ≤ t
}
.

17



1.4.1 Local representation formula

We first begin by showing that we can derive apriori estimates for the deriva-
tives for any smooth solution of the heat equation. First we derive a local
representation formula.

Theorem 21. Let T > 0 and let Ω ⊂ Rn be open and bounded. Let u ∈
C∞ (ΩT ) satisfy

ut −∆u = 0 in Ω× (0, T ) .

Let (x0, t0) ∈ Ω × (0, T ] and r > 0 such that C (x0, t0; r) ⊂⊂ Ω × (0, T ] . Let
ζ ∈ C∞ (ΩT ) be such that 0 ≤ ζ ≤ 1 and

ζ ≡ 1 in C (x0, t0; 3r/4) , ζ ≡ 0 in Rn × [0, t0] \ C (x0, t0; r)

and ζ = 0 near the curved and the bottom boundary of the cylinder C (x0, t0; r) .
Then we have

u (x, t) =

tˆ

t0−r2

ˆ

|y−x0|<r

K (x, t, y, s)u (y, s) dyds,

for any (x, t) ∈ C (x0, t0; r/2) , where

K (x, t, y, s) := Φ (x− y, t− s)
[
∂ζ

∂s
(y, s) + ∆ζ (y, s)

]
+ 2 〈∇yΦ (x− y, t− s) ,∇ζ (y, s)〉 ,

where Φ (·, ·) denotes the fundamental solution of the heat equation.

Proof. Set

v (x, t) := ζ (x, t)u (x, t) .

Then v = 0 on Rn × {t = 0} and

vt = ζtu+ ζut and ∆v = ζ∆u+ 2 〈∇ζ,∇u〉+ u∆ζ.

Hence, we have

vt −∆v = ζ (ut −∆u) + ζtu− 2 〈∇ζ,∇u〉 − u∆ζ

= ζtu− 2 〈∇ζ,∇u〉 − u∆ζ,

in Rn × (0, t0) . Notice that the function

f := ζtu− 2 〈∇ζ,∇u〉 − u∆ζ (13)
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is actually defined everywhere in ΩT and f ∈ C∞c (ΩT ) . By a slight abuse of
notation, we would denote the extension by zero outside ΩT of this function to
Rn × (0,∞) by f as well. Clearly, v satisfies{

vt −∆v = f in Rn × (0, t0) ,

v = 0 on Rn × {t = 0} .

Define

ṽ (x, t) :=

ˆ t

0

ˆ
Rn

Φ (x− y, t− s) f (y, s) dyds for all (x, t) ∈ Rn × (0,∞) .

By Theorem 6, ṽ solves initial value-problem{
ṽt −∆ṽ = f in Rn × (0,∞) ,

ṽ = 0 on Rn × {t = 0} .

and thus v, ṽ are both strong solutions of{
wt −∆w = f in Rn × (0, t0) ,

w = 0 on Rn × {t = 0} .

It is easy to see that both functions are bounded (by a constant, depending on
u and ζ) and thus, by the uniqueness conclusion of Theorem 16, we have

v (x, t) = ṽ (x, t) =

ˆ t

0

ˆ
Rn

Φ (x− y, t− s) f (y, s) dyds

in Rn×(0, t0) . Since ζ ≡ 1 in C (x0, t0; 3r/4) and C (x0, t0; r/2) ⊂ C (x0, t0; 3r/4) ,
we deduce

u (x, t) = v (x, t) =

ˆ t

0

ˆ
Rn

Φ (x− y, t− s) f (y, s) dyds

for all (x, t) ∈ C (x0, t0; r/2) . Looking at (13), we arrive at

u (x, t) =

tˆ

t0−r2

ˆ

|y−x0|<r

Φ (x− y, t− s)
[
∂ζ

∂s
(y, s)−∆ζ (y, s)

]
u (y, s) dyds

−2

tˆ

t0−r2

ˆ

|y−x0|<r

Φ (x− y, t− s) 〈∇ζ (y, s) ,∇u (y, s)〉) dyds,

(14)

for all (x, t) ∈ C (x0, t0; r/2) . Now, since ζ vanishes near the curved boundary
of C (x0, t0; r) , for every t0 − r2 ≤ s ≤ t0, the map

y 7→ ζ (y, s) is compactly supported inside the ball Br (x0) .
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Thus, integrating by parts in the y variable, we have

−2

tˆ

t0−r2

ˆ

|y−x0|<r

Φ (x− y, t− s) 〈∇ζ (y, s) ,∇u (y, s)〉) dyds

= −2

tˆ

t0−r2

ˆ

|y−x0|<r

〈Φ (x− y, t− s)∇ζ (y, s) ,∇u (y, s)〉) dyds

= 2

tˆ

t0−r2

ˆ

|y−x0|<r

divy [Φ (x− y, t− s)∇ζ (y, s)]u (y, s) dyds

= 2

tˆ

t0−r2

ˆ

|y−x0|<r

〈∇yΦ (x− y, t− s) ,∇ζ (y, s)〉u (y, s) dyds

+ 2

tˆ

t0−r2

ˆ

|y−x0|<r

Φ (x− y, t− s) ∆ζ (y, s)u (y, s) dyds.

Substituting this in (14), we obtain the desired formula.

Remark 22. Notice that although we have assumed u ∈ C∞ (ΩT ) , the proof
only needed u to be smooth in a neighborhood of C (x0, t0; r) in ΩT .

1.4.2 Interior derivative estimates

Now we are ready to obtain our derivative estimates.

Theorem 23 (Interior apriori estimate for derivatives). Let T > 0 and let
Ω ⊂ Rn be open and bounded. Let u ∈ C∞ (ΩT ) satisfy

ut −∆u = 0 in Ω× (0, T ) .

Then for any pair of nonnegative integers k, l, there exists a constant Ckl > 0,
independent of u, such that

max
C(x0,t0;r/2)

∣∣Dα
xD

l
tu
∣∣ ≤ Ckl

rk+2l+n+2
‖u‖L1(C(x0,t0;r)) ,

for every multiindex α with |α| = k for every cylinder

C (x0, t0; r/2) ⊂ C (x0, t0; r) ⊂⊂ Ω× (0, T ] .

Proof. First we begin by noting that we can assume, without loss of generality
that (x0, t0) = (0, 0) and r = 1. Indeed, fix a point (x0, t0) ∈ Ω × (0, T ] and a
radius r > 0 such that C (x0, t0; r) ⊂⊂ Ω× (0, T ] . Set

v (x, t) := u
(
x0 + rx, t0 + r2t

)
.
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Then v is smooth in a neighborhood of C (0, 0; 1) and

vt −∆v = 0

in a neighborhood of C (0, 0; 1) . Moreover, we have

‖v‖L1(C(0,0;1)) =
1

rn+2
‖u‖L1(C(x0,t0;r))

and

Dα
xD

l
tv (x, t) = r2l+kDα

xD
l
tu
(
x0 + rx, t0 + r2t

)
for any (x, t) in a neighborhood of C (0, 0; 1) , for any pair of nonnegative integers
k, l, and any multiindex α with |α| = k. In view of the last two inequalities,
proving the result for v would give us the result for u.

Now we return to the proof, where we have assumed (x0, t0) = (0, 0) and
r = 1. Applying Theorem 21, we have

u (x, t) =

tˆ

−1

ˆ

|y|<1

K (x, t, y, s)u (y, s) dyds, for any (x, t) ∈ C (0, 0; 1/2) ,

where

K (x, t, y, s) := Φ (x− y, t− s)
[
∂ζ

∂s
(y, s) + ∆ζ (y, s)

]
+ 2 〈∇yΦ (x− y, t− s) ,∇ζ (y, s)〉 ,

where Φ (·, ·) denotes the fundamental solution of the heat equation and ζ is a
cut-off function as in Theorem 21. Thus, for any pair of nonnegative integers
k, l, and any multiindex α with |α| = k, we deduce

∣∣Dα
xD

l
tu (x, t)

∣∣ ≤ tˆ

−1

ˆ

|y|<1

∣∣Dα
xD

l
tK (x, t, y, s)

∣∣ |u (y, s)| dyds

≤
0ˆ

−1

ˆ

|y|<1

∣∣Dα
xD

l
tK (x, t, y, s)

∣∣ |u (y, s)| dyds

=

ˆ

C(0,0;1)

∣∣Dα
xD

l
tK (x, t, y, s)

∣∣ |u (y, s)| dyds

≤ Ckl ‖u‖L1(C(0,0;1)) ,

for some constant Ckl > 0 for any (x, t) ∈ C (0, 0; 1/2) . This completes the
proof.

Remark 24. Notice that once again, we only need u to be smooth in a neigh-
borhood of C (x0, t0; r) in ΩT .
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1.4.3 Smoothness of solutions

Now we are in a position to use the apriori estimate for smooth solutions to
prove that any strong solution of heat equation is smooth in the interior and
satisfies the interior derivative estimtes.

Theorem 25 (Interior estimate for derivatives). Let T > 0 and let Ω ⊂ Rn be
open and bounded. Let u ∈ C2

1 (ΩT ) satisfy

ut −∆u = 0 in Ω× (0, T ) .

Then u ∈ C∞ (Ω× (0, T )) and for any pair of nonnegative integers k, l, there
exists a constant Ckl > 0, independent of u, such that

max
C(x0,t0;r/2)

∣∣Dα
xD

l
tu
∣∣ ≤ Ckl

rk+2l+n+2
‖u‖L1(C(x0,t0;r)) ,

for every multiindex α with |α| = k for every cylinder

C (x0, t0; r/2) ⊂ C (x0, t0; r) ⊂⊂ Ω× (0, T ) .

Proof. Fix a point (x0, t0) ∈ Ω×(0, T ) and a radius r > 0 such that C (x0, t0; r) ⊂⊂
Ω× (0, T ) . Let φ be a mollifying kernel in x and t. Let U is an open neighbor-
hood of C (x0, t0; r) such that U ⊂⊂ Ω× (0, T ) . Then there exists ε0 > 0 such
that for any 0 < ε < ε0, the functions

uε := u ∗ φε

is smooth in U. It is easy to check that these functions all satisfy

uεt −∆uε = 0 in U.

By standard properties of convolutions, we also have

uε → u in L1 (U) .

Note that the linearity of the heat equation implies that for any two 0 < ε1, ε2 <
ε0, the function uε1 − uε2 also satisfies the heat equation in U. Thus, applying
Theorem 23, for any pair of nonnegative integer k, l and for every multiindex α
with |α| = k, we deduce,

max
C(x0,t0;r/2)

∣∣Dα
xD

l
t (uε1 − uε2)

∣∣ ≤ Ckl
rk+2l+n+2

‖uε1 − uε2‖L1(C(x0,t0;r))

≤ Ckl
rk+2l+n+2

‖uε1 − uε2‖L1(U) → 0

as ε1, ε2 → 0. This shows that for any pair of nonnegative integer k, l and for ev-
ery multiindex α with |α| = k, the sequence of smooth functions

{
Dα
xD

l
tu
ε
}
ε>0

are uniformly Cauchy and thus converges uniformly to a continuous function
vα,l in C (x0, t0; r/2) . In particular, uε → u in C (x0, t0; r/2) . Now, standard
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arguments imply that u ∈ C∞ (C (x0, t0; r/2)) and for any pair of nonnegative
integer k, l and for every multiindex α with |α| = k, we have

Dα
xD

l
tu
ε → vα,l = Dα

xD
l
tu uniformly in C (x0, t0; r/2) .

Since (x0, t0) ∈ Ω × (0, T ) is arbitrary, this implies u ∈ C∞ (Ω× (0, T )) and
concludes the proof.

Remark 26. The result is actually valid for the top i.e. t = T as well, as
the estimates hold for t = T. Only the approximation by mollification argument
needs to change a bit.

1.5 Energy methods

Energy methods are a useful tool for the case of heat equation. It is the mathe-
matical expression of the physical fact that evolution via the heat equation can
only lose energy, but can not create energy.

1.5.1 Energy dissipation

Let T > 0 and let Ω ⊂ Rn be open, bounded and smooth. For any function
u ∈ C

(
ΩT
)
, then for any 0 ≤ t ≤ T, we define the energy of u at time t as

Eu (t) :=

ˆ
Ω

|u (x, t)|2 dx.

Theorem 27 (Energy dissipation). Let T > 0 and let Ω ⊂ Rn be open, bounded
and smooth. Let u ∈ C2

1

(
ΩT
)

satisfy{
ut −∆u = 0 in Ω× (0, T ) ,

u = 0 on ∂Ω× (0, T ) .

Then we have
d

dt
Eu (t) ≤ 0 for all 0 < t < T.

In particular, we have

Eu (t) ≤ Eu (0) for all 0 ≤ t ≤ T.

Proof. We have

d

dt
Eu (t) =

d

dt

(ˆ
Ω

|u (x, t)|2 dx

)
= 2

ˆ
Ω

u (x, t)ut (x, t) dx

= 2

ˆ
Ω

u (x, t) ∆u (x, t) dx

= −2

ˆ
Ω

|∇u (x, t)|2 dx ≤ 0,
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for any 0 < t < T. Now, integrating this with respect to t, we deduce

Eu (t)− Eu (0) =

ˆ t

0

d

dt
Eu (t) dt ≤ 0,

for any 0 < t ≤ T. This completes the proof.

1.5.2 Uniqueness via energy methods

As a consequence of energy dissipation, we can now provide another proof of
the uniqueness for the initial-boundary value problem for heat equation without
using the maximum principle.

Theorem 28 (Uniqueness for the initial-Dirichlet boundary value problem).
Let Ω ⊂ Rn be open, bounded, smooth. Let T > 0 and f : ΩT → R, g : ΓΩT → R
be continuous functions. Then there exists at most one solution u ∈ C2

1

(
ΩT
)

of the following initial-Dirichlet boundary value problem{
ut −∆u = f in Ω× (0, T ) ,

u = g on ΓΩT .

Proof. If u, v ∈ C2
1

(
ΩT
)

are two solutions of the problem, then setting w = u−v
we deduce that w ∈ C2

1

(
ΩT
)

satisfy{
wt −∆w = 0 in Ω× (0, T ) ,

w = 0 on ΓΩT .

Thus, bu energy dissipation, for any 0 ≤ t ≤ T, we have
ˆ

Ω

|w (x, t)|2 dx = Ew (t) ≤ Ew (0) = 0.

This proves w ≡ 0 in ΩT and completes the proof.

1.6 Harnack inequality

1.6.1 Harnack inequality for the IVP

Theorem 29. Let u ∈ C2
1 (Rn × (0, T ]) ∩ C (Rn × [0, T ]) be a solution of the

following initial value problem{
ut −∆u = f in Rn × (0, T ],

u = g on Rn × {t = 0} ,

Assume u ≥ 0 in Rn × (0, T ) and u ∈ L∞ (Rn × [0, T ]) . Then for any compact
K ⊂ Rn and any 0 < t1 < t2 < T there exists a constant C = C (K, t1, t2) > 0
such that

sup
x∈K

u (x, t1) ≤ C inf
y∈K

u (y, t2) .

24



Proof. By the representation formula and uniqueness of the Cauchy problem,
we have

u (x2, t2) =

ˆ
Rn

1

(4πt2)
n
2
e−
|x2−y|

2

4t2 g(y)dy.

Now, for t1 < t2 whenever |x1| , |x2| ≤ Λ < ∞, there exists a constant
C = C (|t1 − t2| ,Λ) so that

−|x2 − y|2

4t2
≥ −|x1 − y|2

4t1
− C. ∀y ∈ Rn

Consequently,

u (x2, t2) ≥
(
t1
t2

)n
2

e−C
ˆ
Rn

1

(t1)
n
2
e−
|x1−y|

2

4t1 g(y)dy =

(
t1
t2

)n
2

e−Cu (x1, t1) .

This completes the proof.

In the above, we have used the following elementary estimate, whose proof
is left as an exercise.

Lemma 30. If K ⊂ Rn is compact and 0 < t1 < t2 < ∞, then there exists a
constant C > 0 depending on K and t2, t1 > 0, such that

|x1 − y|2

t2
≤ |x2 − y|2

t1
+ C ∀x1, x2 ∈ K, y ∈ Rn.

Exercise 31. Let g : Rn → [0,∞) a smooth function with compact support such
that g(0) = 1. Set

u(x, t) :=

ˆ
Rn

Φ(x− y, t)g(y) t > 0

Show that

inf
x∈Rn

u(x, t) = 0 for all t > 0

and

sup
x∈Rn

u(x, t) > 0 for all t > 0.

Why does this not contradict Harnack’s principle in Theorem 29?

Exercise 32. Let us consider one space-dimension. Let ξ ∈ R be given and u
defined as

uξ(x, t) := (t+ 1)−
1
2 e−

x+ξ)2

4(t+1) .

Show that u is a solution of (∂t −∆)u = 0 in R × (0,∞). Moroever show for
each fixed t > 0 there is no constant C = C(t) > 0 such that

sup
x∈[−1,1]

uξ(x, t) ≤ C inf
y∈[−1,1]

uξ(y, t) ∀ξ ∈ Rn.

Why does this not contradict Harnack’s principle in Theorem 29?
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1.6.2 Harnack for the IBVP

We now want to prove the Harnack inequality for the Dirichlet IVP for the
heat equation. For this, we need a slightly more general version of the weak
maximum principle.

Theorem 33 (Weak maximum principle with first order terms). Let B ∈
C (ΩT ;Rn) and let u ∈ C2

1 (ΩT ) ∩ C
(
ΩT
)

satisfy

ut −∆u− 〈B (x, t) ,∇u〉 ≤ 0 in ΩT .

Then

max
ΩT

u = max
ΓΩT

u.

Proof. Without loss of generality, we can assume

ut −∆u− 〈B (x, t) ,∇u〉 < 0 in ΩT .

Indeed, otherwise we consider v (x, t) = u (x, t)− µt and let µ→ 0+ at the end.
Now suppose, if possible, that (x0, t0) ∈ ΩT is a point such that

u (x0, t0) = max
ΩT

u.

Thus, we have ut (x0, t0) ≥ 0 ( in fact ut (x0, t0) = 0 unless t0 = T ),∇u (x0, t0) =
0 and D2u (x0, t0) is nonpositive definite. Thus, we have

∆u (x0, t0) = traceD2u (x0, t0) ≤ 0.

But these inequalities imply

ut (x0, t0)−∆u (x0, t0)− 〈B (x0, t0) ,∇u (x0, t0)〉 ≥ 0,

contradicting our assumption. This completes the proof.

Theorem 34 (Harnack Inequality). Let Ω ⊂ Rn be open and bounded. Let
T > 0. Let u ∈ C2

1 (ΩT ) be a nonnegative solution of

ut −∆u = 0 in ΩT .

Suppose Ω̃ ⊂⊂ Ω is connected. For each 0 < t1 < t2 ≤ T , there exists a constant

C = C
(

Ω̃, t1, t2

)
> 0 such that

sup
Ω̃

u (·, t1) ≤ C inf
Ω̃
u (·, t2) .

Proof. By the interior regularity results proved earlier, we can assume u is
smooth. Without loss of generality we may also assume that inf u > 0 in ΩT ,
as otherwise we would consider u+ ε and let ε→ 0+ at the end. By a covering
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argument, it is also enough to prove the result when Ω̃ is an open ball BR ⊂⊂ Ω.
We set

v := log u in ΩT .

We want to establish the differential inequality

vt ≥ α|∇v|2 − β in BR × [t1, t2] , (15)

with constants α, β > 0, which depends only on the ball BR, the times t1, t2
and possibly also on the dimension n, but is independent of v.

First let us show that (15) is enough to prove the result. Fix x1, x2 ∈ BR.
Then we have

v (x2, t2)− v (x1, t1) =

ˆ 1

0

d

ds
v (sx2 + (1− s)x1, st2 + (1− s) t1) ds

=

ˆ 1

0

[〈∇v, x2 − x1〉+ vt (t2 − t1)] ds

(15)

≥
ˆ 1

0

[
−|∇v| |x2 − x1|+ (t2 − t1)

[
α|∇v|2 − β

]]
ds.

Now the last integrand is a quadratic polynomial in |∇v| with α (t2 − t1) > 0.
Thus, elementary manipulations by completing the square yields

α (t2 − t1) |∇v|2 − |x2 − x1| |∇v| − β (t2 − t1)

= α (t2 − t1)

(
|∇v|+ |x2 − x1|

2α (t2 − t1)

)2

− β (t2 − t1)− |x2 − x1|2

4α (t2 − t1)

≥ −β (t2 − t1)− |x2 − x1|2

4α (t2 − t1)

≥ −β (t2 − t1)− R2

α (t2 − t1)

:= −γ.

Thus, we deduce

v (x2, t2)− v (x1, t1) ≥
ˆ 1

0

[
−|∇v| |x2 − x1|+ (t2 − t1)

[
α|∇v|2 − β

]]
ds

≥ −
ˆ 1

0

γ ds = −γ.

But by definition of v, this implies

u (x1, t1) ≤ eγu (x2, t2) .

Since x1, x2 ∈ BR is arbitrary, this implies the desired Harnack inequality.
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Thus it only remains to establish (15). We easily compute

ut = evvt, ∇u = ev∇v and ∆u = ev
(

∆v + |∇v|2
)
.

This yields

0 = ut −∆u = ev
(
vt −∆v − |∇v|2

)
.

Set w := ∆v and w̃ := |∇v|2 and note that the above equation implies

vt = ∆v + |∇v|2 = w + w̃ in ΩT . (16)

Note that (15) is a lower bound for vt. The term |∇v|2 is nonnegative, but we
do not know anything about the sign of ∆v. However, if we can find a constant
0 < α < 1 such that

∆v + (1− α) |∇v|2

is bounded below, i.e.

∆v + (1− α) |∇v|2 ≥ −β,

for some constant β > 0, this would establish (15). The crucial identity that
helps us enormously in the computations is the following one.

∆|∇v|2 = 2
∣∣D2v

∣∣2 + 2 〈∇v,∇∆v〉 . (17)

This can be established by direct computation. Now applying the Laplacian to
both sides of (16) and using (17), we immediately obtain

wt −∆w − 2∇v · ∇w = 2
∣∣D2v

∣∣2 . (18)

On the other hand, applying the gradient to both sides of (16) and using (17),
we deduce

w̃t = 2 〈∇v,∇vt〉

= 2
〈
∇v,∇

(
∆v + |∇v|2

)〉
= 2 〈∇v,∇∆v〉+ 2

〈
∇v,∇ |∇v|2

〉
= ∆|∇v|2 − 2

∣∣D2v
∣∣2 + 2

〈
∇v,∇ |∇v|2

〉
= ∆w̃ − 2

∣∣D2v
∣∣2 + 2 〈∇v,∇w̃〉 .

Thus, we arrive at

w̃t −∆w̃ − 2 〈∇v,∇w̃〉 = −2
∣∣D2v

∣∣2 . (19)
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Now, noting (18) and (19), we see that the uniformly parabolic operator

PU := ∂tU −∆U − 2 〈∇v,∇U〉 ,

applied to w and w̃ have opposite signs. Thus, we can take α = 1/2 and set

ŵ := w +
1

2
w̃

to discover

ŵt −∆ŵt − 2 〈∇v,∇ŵ〉 =
∣∣D2v

∣∣2 ≥ 0.

This implies ŵ is a supersolution to the uniformly parabolic operator P and
thus would satisfy the weak minimum principle. Hence we can establish a lower
bound for ŵ if we knew a lower bound for ŵ on ΓΩT . Unfortunately, we do not
have any information about the values of ŵ on ΓΩT . So instead we plan to modify
ŵ to make it vanish on ΓΩT , but hopefully still keeping it a supersolution of P,
which would establish a lower bound. To this end, we choose a cutoff function
ζ ∈ C∞ (ΩT ) such that 0 ≤ ζ ≤ 1 in ΩT and

ζ ≡ 1 in BR × [t1, t2] and ζ ≡ 0 near ΓT .

Now we set

W := ζ4ŵ + µt in ΩT ,

for some µ > 0 that we are going to choose suitably later. Now direct compu-
tation yields

Wt −∆W − 2 〈∇v,∇W 〉 = ζ4 (ŵt −∆ŵt − 2∇v · ∇ŵ) + µ+R (x, t) ,

= ζ4
∣∣D2v

∣∣2 + µ+R (x, t) , (20)

where the reminder term is given by

R (x, t) := 4ζ2ζtŵ − 8ζ3 〈∇v,∇ζ〉 ŵ − 8ζ3 〈∇ŵ,∇ζ〉

− 12ζ2 |∇ζ|2 ŵ − 4ζ2ŵ∆ζ.

Now we claim that (20) implies W can not have a negative minima in ΩT if
µ > 0 is chosen large enough. Suppose, for the sake of contradiction, that W
attains a negative minima at (x0, t0) ∈ ΩT . Then, we have Wt (x0, t0) ≤ 0 (
Wt (x0, t0) = 0 if t0 < T ), ∇W (x0, t0) = 0 and D2W (x0, t0) is nonnegative
definite. Thus ∆W (x0, t0) = traceD2W (x0, t0) ≥ 0. Thus, the LHS of (20) is
nonpositive at the point (x0, t0) . But we are going to show now that we can
choose µ > 0 large enough ( independently of (x0, t0) ) such that

ζ4 (x0, t0)
∣∣D2v (x0, t0)

∣∣2 + µ+R (x0, t0) > 0.
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This would yield the contradiction and rule out a negative minima for W.
Now note that since W = ζ4ŵ + µt is assumed to attain a negative minima

at (x0, t0) , we must have

ζ (x0, t0) > 0 and ∆v (x0, t0) +
1

2
|∇v (x0, t0)|2 = ŵ (x0, t0) < 0.

This last inequality implies the inequalities

|ŵ (x0, t0)| ≤ |∆v (x0, t0)| ≤ c
∣∣D2v (x0, t0)

∣∣ , (21)

|∇v (x0, t0)|2 ≤ 2 |∆v (x0, t0)| ≤ c
∣∣D2v (x0, t0)

∣∣ . (22)

A brief glance at the expression for R would make it clear that now it only
remains to find a way to estimate ∇ŵ. For this, we use the following fact

0 = ∇W (x0, t0) = 4ζ3 (x0, t0)∇ζ (x0, t0) ŵ (x0, t0) + ζ4 (x0, t0)∇ŵ (x0, t0) .

Using the fact that ζ (x0, t0) 6= 0, this yields

|ζ (x0, t0)∇ŵ (x0, t0)| = |−4ŵ (x0, t0)∇ζ (x0, t0)| ≤ 4 |ŵ (x0, t0)∇ζ (x0, t0)| .
(23)

Now, using (21), (22) and (23) and finally using Young’s inequality with ε > 0,
we deduce the estimate

|R (x0, t0)| ≤ cζ2 (x0, t0)
∣∣D2v (x0, t0)

∣∣+ cζ3 (x0, t0)
∣∣D2v (x0, t0)

∣∣ 3
2

≤ εζ4 (x0, t0)
∣∣D2v (x0, t0)

∣∣2 + Cε, (24)

for any ε > 0. Thus, choosing 0 < ε < 1, we deduce the estimate

ζ4 (x0, t0)
∣∣D2v (x0, t0)

∣∣2 + µ+R (x0, t0)

≥ ζ4 (x0, t0)
∣∣D2v (x0, t0)

∣∣2 + µ− |R (x0, t0)|

≥ (1− ε) ζ4 (x0, t0)
∣∣D2v (x0, t0)

∣∣2 + µ+ Cε

≥ µ+ Cε > 0,

if µ > 0 is chosen to satisfy µ > Cε. This implies W = ζ4ŵ+µt ≥ 0 in ΩT . But
since ζ ≡ 1 in BR × [t1, t2] , we deduce

ŵ + µt ≥ 0 in BR × [t1, t2] .

This finally implies the estimate

∆v +
1

2
|∇v|2 = ŵ ≥ −µt2 in BR × [t1, t2] .

Returning to (16), this implies

vt = ∆v + |∇v|2 ≥ 1

2
|∇v|2 − µt2 in BR × [t1, t2] .

This establishes (15) and completes the proof.
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2 L2 estimates

2.1 First estimates and existence

2.1.1 First L2 estimate

Theorem 35 (First apriori L2 estimate). Let Ω ⊂ Rn be open, bounded and
smooth. Let T > 0. Let

A = A (x, t) := (aij (x, t))1≤i,j≤n ∈ L
∞ (ΩT ;Rn×n

)
,

B = B (x, t) := (bi (x, t))1≤i≤n ∈ L
∞ (ΩT ;Rn) ,

c = c (x, t) ∈ L∞ (ΩT ) .

Let A be uniformly elliptic in ΩT with constant λ > 0, i.e. there exists some
constant λ > 0 such that we have

〈A (x, t) ξ, ξ〉 ≥ λ |ξ|2

for a.e. x ∈ Ω and a.e. t ∈ (0, T ).

Let

g ∈ L2 (Ω) , f ∈ L2
(
(0, T ) ;L2 (Ω)

)
F := (Fi)1≤i≤n ∈ L

2
(
(0, T ) ;L2 (Ω;Rn)

)
.

Let u ∈ C∞
(
ΩT
)

be a smooth solution to
ut − div (A∇u) + 〈B,∇u〉+ cu = f (x, t)− divx F (x, t) in ΩT ,

u = 0 on ∂Ω× [0, T ],

u = g on Ω× {t = 0} .

Then there exists a constant C = C (λ, ‖A‖L∞ , ‖B‖L∞ , ‖c‖L∞ ,Ω, T ) > 0 such
that

max
0≤t≤T

‖u (t)‖L2(Ω) + ‖u‖L2((0,T );H1
0 (Ω)) + ‖ut‖L2((0,T );H−1(Ω))

≤ C
(
‖f‖L2((0,T );L2(Ω)) + ‖F‖L2((0,T );L2(Ω;Rn)) + ‖g‖L2(Ω)

)
. (25)

Proof. Multiply the equation by u and for a.e. 0 < s < T, integrate over Ω and
integrate by parts. Noticing that u vanishes on ∂Ω, we obtain

0 =

ˆ
Ω

utu+

ˆ
Ω

〈A∇u,∇u〉+

ˆ
Ω

〈B,∇u〉u+

ˆ
Ω

c |u|2 −
ˆ

Ω

fu−
ˆ

Ω

〈F,∇u〉

≥ 1

2

d

dt

(ˆ
Ω

|u|2
)

+ λ

ˆ
Ω

|∇u|2 − (|I1|+ |I2|+ |I3|+ |I4|) .
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Now, we have

|I1| =
∣∣∣∣ˆ

Ω

〈B,∇u〉u
∣∣∣∣ ≤ ˆ

Ω

|〈B,∇u〉u|

≤ ‖B‖L∞
ˆ

Ω

|∇u| |u| ≤ ε
ˆ

Ω

|∇u|2 + C

ˆ
Ω

|u|2 .

|I2| =
∣∣∣∣ˆ

Ω

c |u|2
∣∣∣∣ ≤ ‖c‖L∞ ˆ

Ω

|u|2 .

|I3| =
∣∣∣∣ˆ

Ω

fu

∣∣∣∣ ≤ ˆ
Ω

|f | |u| ≤ C
ˆ

Ω

|f |2 + C

ˆ
Ω

|u|2

|I4| =
∣∣∣∣ˆ

Ω

〈F,∇u〉
∣∣∣∣ ≤ ˆ

Ω

|F | |∇u| ≤ ε
ˆ

Ω

|∇u|2 + C

ˆ
Ω

|F |2 .

Choosing ε > 0 small enough, we deduce

d

dt

(ˆ
Ω

|u|2
)

+ λ

ˆ
Ω

|∇u|2 ≤ C1

(ˆ
Ω

|u|2 +

ˆ
Ω

|f |2 +

ˆ
Ω

|F |2
)

for some constant C1 > 0. But this implies

d

dt

(
e−C1t

ˆ
Ω

|u|2
)

= e−C1t

[
d

dt

(ˆ
Ω

|u|2
)
− C1

ˆ
Ω

|u|2
]

≤ e−C1t

[
C1

(ˆ
Ω

|f |2 +

ˆ
Ω

|F |2
)
− λ
ˆ

Ω

|∇u|2
]

So we arrive at

d

dt

(
e−C1t

ˆ
Ω

|u|2
)

+ λe−C1t

ˆ
Ω

|∇u|2 ≤ C1e
−C1t

(ˆ
Ω

|f |2 +

ˆ
Ω

|F |2
)

≤ C1

(ˆ
Ω

|f |2 +

ˆ
Ω

|F |2
)

as C1t > 0 and thus e−C1t < 1. Integrating with respect to t from 0 to s, where
0 < s < T, we deduce

e−C1s

ˆ
Ω

|u (s)|2 −
ˆ

Ω

|u (0)|2 + λ

ˆ s

0

e−C1t

ˆ
Ω

|∇u (t)|2 dt

≤ C
(ˆ s

0

ˆ
Ω

|f |2 dt+

ˆ s

0

ˆ
Ω

|F |2 dt

)
≤ C

(ˆ T

0

ˆ
Ω

|f |2 dt+

ˆ T

0

ˆ
Ω

|F |2 dt

)
.

= C
(
‖f‖2L2((0,T );L2(Ω)) + ‖F‖2L2((0,T );L2(Ω;Rn))

)
.
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Thus, using the obvious estimate e−C1T < e−C1t for all 0 ≤ t ≤ T, we have

e−C1s

ˆ
Ω

|u (s)|2 + λe−C1T

ˆ s

0

ˆ
Ω

|∇u (t)|2 dt

≤ C

(ˆ T

0

ˆ
Ω

|f |2 dt+

ˆ T

0

ˆ
Ω

|F |2 dt

)
+

ˆ
Ω

|u (0)|2 .

Thus,

ˆ
Ω

|u (s)|2 + λe−C1T

ˆ s

0

ˆ
Ω

|∇u (t)|2 dt

≤
ˆ

Ω

|u (s)|2 + λe−C1(T−s)
ˆ s

0

ˆ
Ω

|∇u (t)|2 dt

≤ CeC1s

(ˆ T

0

ˆ
Ω

|f |2 dt+

ˆ T

0

ˆ
Ω

|F |2 dt+

ˆ
Ω

|u (0)|2
)

≤ CeC1T

(ˆ T

0

ˆ
Ω

|f |2 dt+

ˆ T

0

ˆ
Ω

|F |2 dt+

ˆ
Ω

|u (0)|2
)

= CeC1T

(ˆ T

0

ˆ
Ω

|f |2 dt+

ˆ T

0

ˆ
Ω

|F |2 dt+

ˆ
Ω

|g|2
)
.

Taking supremum over 0 ≤ s ≤ T, we deduce

sup
0≤t≤T

‖u (t)‖2L2(Ω) + ‖u‖2L2((0,T );H1
0 (Ω))

≤ C
(
‖f‖2L2((0,T );L2(Ω)) + ‖F‖2L2((0,T );L2(Ω;Rn)) + ‖g‖2L2(Ω)

)
. (26)

Now multiplying the equation by φ ∈ L2
(
(0, T );H1

0 (Ω)
)

and integrating
over Ω and integrating by parts, we have

0 =

ˆ
Ω

utφ+

ˆ
Ω

〈A∇u,∇φ〉+

ˆ
Ω

〈B,∇u〉φ+

ˆ
Ω

cuφ−
ˆ

Ω

fφ−
ˆ

Ω

〈F,∇φ〉 .

Thus, we have

ˆ
Ω

utφ = −
ˆ

Ω

〈A∇u,∇φ〉 −
ˆ

Ω

〈B,∇u〉φ−
ˆ

Ω

cuφ+

ˆ
Ω

fφ+

ˆ
Ω

〈F,∇φ〉 .

Hence, we deduce ∣∣∣∣ˆ
Ω

utφ

∣∣∣∣ ≤ |I1|+ |I2|+ |I3|+ |I4|+ |I5| ,
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where we have

|I1| =
∣∣∣∣ˆ

Ω

〈A∇u,∇φ〉
∣∣∣∣ ≤ ‖A‖L∞ ˆ

Ω

|∇u| |∇φ| ≤ ‖A‖L∞ ‖∇u‖L2(Ω) ‖∇φ‖L2(Ω) ,

|I2| =
∣∣∣∣ˆ

Ω

〈B,∇u〉φ
∣∣∣∣ ≤ ‖B‖L∞ ˆ

Ω

|∇u| |φ| ≤ ‖B‖L∞ ‖∇u‖L2(Ω) ‖φ‖L2(Ω) ,

|I3| =
∣∣∣∣ˆ

Ω

cuφ

∣∣∣∣ ≤ ‖c‖L∞ ˆ
Ω

|u| |φ| ≤ ‖c‖L∞ ‖u‖L2(Ω) ‖φ‖L2(Ω) ,

|I4| =
∣∣∣∣ˆ

Ω

fφ

∣∣∣∣ ≤ ˆ
Ω

|f | |φ| ≤ ‖f‖L2(Ω) ‖φ‖L2(Ω) ,

|I5| =
∣∣∣∣ˆ

Ω

〈F,∇φ〉
∣∣∣∣ ≤ ˆ

Ω

|F | |∇φ| ≤ ‖F‖L2(Ω) ‖∇φ‖L2(Ω) .

This implies,∣∣∣∣ˆ
Ω

utφ

∣∣∣∣ ≤ C (‖u (t)‖H1
0 (Ω) + ‖f (t)‖L2(Ω) + ‖F (t)‖L2(Ω)

)
‖φ (t)‖H1

0 (Ω)

By the dual characterization of the H−1 (Ω) norm, this means

‖ut (t)‖H−1(Ω) ≤ C
(
‖u (t)‖H1

0 (Ω) + ‖f (t)‖L2(Ω) + ‖F (t)‖L2(Ω)

)
.

Squaring both sides and integrating with respect to t from 0 to T, we derive

‖ut‖2L2((0,T );H−1(Ω))

≤ C
(
‖u‖2L2((0,T );H1

0 (Ω)) + ‖f‖2L2((0,T );L2(Ω)) + ‖F‖2L2((0,T );L2(Ω;Rn))

)
.

Combined with (26), this implies the estimate

‖ut‖2L2((0,T );H−1(Ω))

≤ C
(
‖f‖2L2((0,T );L2(Ω)) + ‖F‖2L2((0,T );L2(Ω;Rn)) + ‖g‖2L2(Ω)

)
. (27)

Now by the theory of time-dependent Sobolev spaces, we know that{
u ∈ L2

(
(0, T );H1

0 (Ω)
)

ut ∈ L2
(
(0, T );H−1 (Ω)

) ⇒ u ∈ C
(
[0, T ] ;L2 (Ω)

)
along with the estimate

max
0≤t≤T

‖u (t)‖L2(Ω) ≤ C
(
‖u‖L2((0,T );H1

0 (Ω)) + ‖ut‖L2((0,T );H−1(Ω))

)
. (28)

This allows the supremum in (26) to improve to a maximum and this combined
with (27) implies (25) and completes the proof.
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2.1.2 Existence and uniqueness of weak solutions

The following assumptions would always be in force for this subsection. Let
Ω ⊂ Rn be open, bounded and smooth. Let T > 0. Let

A = A (x, t) := (aij (x, t))1≤i,j≤n ∈ L
∞ (ΩT ;Rn×n

)
,

B = B (x, t) := (bi (x, t))1≤i≤n ∈ L
∞ (ΩT ;Rn) ,

c = c (x, t) ∈ L∞ (ΩT ;Rn) .

Let A be uniformly elliptic in ΩT with constant λ > 0, i.e. there exists some
constant λ > 0 such that we have

〈A (x, t) ξ, ξ〉 ≥ λ |ξ|2

for a.e. x ∈ Ω and a.e. t ∈ (0, T ).

In view of the apriori estimates in the last section, it makes sense to define
the concept of weak solutions as follows.

Definition 36 (Weak solutions). Given any g ∈ L2 (Ω) ,f ∈ L2
(
(0, T ) ;L2 (Ω)

)
and F ∈ L2

(
(0, T ) ;L2 (Ω;Rn)

)
, a function u ∈ L2

(
(0, T );H1

0 (Ω)
)

is called a
weak solution to

ut − div (A∇u) + 〈B,∇u〉+ cu = f − divF in ΩT ,

u = 0 on ∂Ω× [0, T ],

u = g on Ω× {t = 0} ,
(29)

if the following are satisfied.

(i) u ∈ L2
(
(0, T );H1

0 (Ω)
)
∩C

(
[0, T ] ;L2 (Ω)

)
and ut ∈ L2

(
(0, T );H−1 (Ω)

)
,

(ii) u (0) = g in L2 (Ω) and

(iii) u satisfies

ˆ T

0

ˆ
Ω

[utφ+ 〈A∇u,∇φ〉+ 〈B,∇u〉φ+ cuφ] dxdt

=

ˆ T

0

ˆ
Ω

[fφ+ 〈F,∇φ〉] dxdt, (30)

for every φ ∈ L2
(
(0, T );H1

0 (Ω)
)
.

Note that this definition, combined with estimate (25) immediately imply
the uniqueness of weak solutions.

Theorem 37. Given any f ∈ L2
(
(0, T ) ;L2 (Ω)

)
, F ∈ L2

(
(0, T ) ;L2 (Ω;Rn)

)
and any g ∈ L2 (Ω) , there exists at most one weak solution to (29).
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Proof. If u, v are two weak solutions of (29), then w = u− v is a weak solution
of (29) with f = 0, F = 0 and g = 0. But then estimate (25) implies,

max
0≤t≤T

‖w (t)‖L2(Ω) = 0.

This implies w ≡ 0 and finishes the proof.

Now using standard approximation and the Galerkin approximations, The-
orem 35 implies the existence of weak solutions.

Theorem 38 (Existence of weak solutions). Let Ω ⊂ Rn be open, bounded and
smooth. Let T > 0. Let

A = A (x, t) := (aij (x, t))1≤i,j≤n ∈ L
∞ (ΩT ;Rn×n

)
,

B = B (x, t) := (bi (x, t))1≤i≤n ∈ L
∞ (ΩT ;Rn) ,

c = c (x, t) ∈ L∞ (ΩT ;Rn) .

Let A be uniformly elliptic in ΩT with constant λ > 0, i.e. there exists some
constant λ > 0 such that we have

〈A (x, t) ξ, ξ〉 ≥ λ |ξ|2

for a.e. x ∈ Ω and a.e. t ∈ (0, T ).

Then given any g ∈ L2 (Ω) ,f ∈ L2
(
(0, T ) ;L2 (Ω)

)
and F ∈ L2

(
(0, T ) ;L2 (Ω;Rn)

)
,

there exists a unique weak solution u to (29). Moreover, there exists a constant
C = C (λ, ‖A‖L∞ , ‖B‖L∞ , ‖c‖L∞ ,Ω, T ) > 0 such that

max
0≤t≤T

‖u (t)‖L2(Ω) + ‖u‖L2((0,T );H1
0 (Ω)) + ‖ut‖L2((0,T );H−1(Ω))

≤ C
(
‖f‖L2((0,T );L2(Ω)) + ‖F‖L2((0,T );L2(Ω;Rn)) + ‖g‖L2(Ω)

)
.

Proof. Step 1: Reduction to smooth data We begin by claiming that it is
enough to show the theorem under the additional assumption that f, F, g, A,B, c
are smooth up to the boundary i.e. we can assume without loss of generality,
that f ∈ C∞

(
ΩT
)
, F ∈ C∞

(
ΩT ;Rn

)
, g ∈ C∞

(
Ω
)
, A ∈ C∞

(
ΩT ;Rn×n

)
,

B ∈ C∞
(
ΩT ;Rn

)
and c ∈ C∞

(
ΩT
)
, Indeed, by standard approximation results

in Sobolev spaces, we can find sequences

{fµ}µ∈N ⊂ C
∞ (ΩT ) , {Fµ}µ∈N ⊂ C∞ (ΩT ;Rn

)
, {gµ}µ∈N C

∞ (Ω)
such that

fµ → f in L2
(
(0, T ) ;L2 (Ω)

)
,

Fµ → F in L2
(
(0, T ) ;L2 (Ω;Rn)

)
,

gµ → g in L2 (Ω) .
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Extending by zero outside ΩT if necessary and mollifying, we can also find
sequences

{Aµ}µ∈N ⊂ C
∞ (ΩT : Rn×n

)
, {Bµ}µ∈N ⊂ C

∞ (ΩT ;Rn
)
, {cµ}µ∈N C

∞ (ΩT )
such that

〈Aµ (x, t) ξ, ξ〉 ≥ λ

2
|ξ|2

for every (x, t) ∈ ΩT for all µ ∈ N and

Aµ → A, Bµ → B and cµ → c strongly in Lp (ΩT ) for any 1 ≤ p <∞,
‖Aµ‖L∞ ≤ ‖A‖L∞ , ‖B

µ‖L∞ ≤ ‖B‖L∞ and ‖cµ‖L∞ ≤ ‖c‖L∞ for all µ ∈ N.

Now if we can prove the theorem when the data is smooth, we can find a sequence
of weak solutions {uµ}µ∈N , such that for every µ ∈ N, uµ is the weak solution
to (29) with data fµ, Fµ, gµ, Aµ, Bµ and cµ and satisfies the estimates

max
0≤t≤T

‖uµ (t)‖L2(Ω) + ‖uµ‖L2((0,T );H1
0 (Ω)) + ‖uµt ‖L2((0,T );H−1(Ω))

≤ C
(
‖fµ‖L2((0,T );L2(Ω)) + ‖Fµ‖L2((0,T );L2(Ω;Rn)) + ‖gµ‖L2(Ω)

)
.

Note that the crucial point here is that the constant C in estimate (25) depends
only on the ellipticity constant λ and the bounds on the L∞ norms of A,B, c
and thus can be chosen to be independent of µ ∈ N. Since the RHS of the above
estimates can be bounded by

C
(
‖f‖L2((0,T );L2(Ω)) + ‖F‖L2((0,T );L2(Ω;Rn)) + ‖g‖L2(Ω)

)
for all µ ∈ N, using standard functional analysis arguments, we deduce that up
to the extraction of a subsequence that we do not relabel, we have

uµ ⇀ u in L2
(
(0, T ) ;H1

0 (Ω)
)
,

uµt ⇀ u in L2
(
(0, T ) ;H−1 (Ω)

)
,

uµ → u in C
(
[0, T ] ;L2 (Ω)

)
,

for some u ∈ L2
(
(0, T );H1

0 (Ω)
)
∩C

(
[0, T ] ;L2 (Ω)

)
with ut ∈ L2

(
(0, T );H−1 (Ω)

)
and u (0) = g.

We can also verify that u is a weak solution of (29) with data f, F, g, A,B, c.
Indeed, we have

‖Aµ∇uµ‖L2((0,T );L2(Ω;Rn)) ≤ ‖A
µ‖L∞(ΩT ;Rn×n) ‖∇u

µ‖L2((0,T );L2(Ω;Rn))

≤ ‖A‖L∞(ΩT ;Rn×n) ‖∇u
µ‖L2((0,T );L2(Ω;Rn)) ≤ C,
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as {∇uµ}µ∈N is uniformly bounded in L2
(
(0, T ) ;L2 (Ω;Rn)

)
. This means, up

to the extraction of a subsequence which we do not relabel, we have

Aµ∇uµ ⇀ v

for some v ∈ L2
(
(0, T ) ;L2 (Ω;Rn)

)
. We claim that v = A∇u. To see this,

consider ζ ∈ C∞c (ΩT ;Rn) and note that

ˆ T

0

ˆ
Ω

〈Aµ∇uµ, ζ〉 dxdt

=

ˆ T

0

ˆ
Ω

〈(Aµ −A)∇uµ, ζ〉 dxdt+

ˆ T

0

ˆ
Ω

〈A∇uµ, ζ〉 dxdt

Now, for any p > 2, we have∣∣∣∣ˆ
ΩT

〈(Aµ −A)∇uµ, ζ〉 dxdt

∣∣∣∣ ≤ ‖Aµ −A‖Lp(ΩT ) ‖∇u
µ‖L2(ΩT ) ‖ζ‖

L
2p
p−2 (ΩT )

≤ C ‖ζ‖
L

2p
p−2 (ΩT )

‖Aµ −A‖Lp(ΩT ) → 0,

by the strong convergence of Aµ to A in Lp. But by the weak convergence uµ

in L2
(
(0, T );H1

0 (Ω)
)
, we have

ˆ T

0

ˆ
Ω

〈A∇uµ, ζ〉 dxdt→
ˆ T

0

ˆ
Ω

〈A∇u, ζ〉 dxdt.

Thus, the last two estimate implies

ˆ T

0

ˆ
Ω

〈Aµ∇uµ, ζ〉 dxdt→
ˆ T

0

ˆ
Ω

〈A∇u, ζ〉 dxdt,

for any ζ ∈ C∞c (ΩT ;Rn) . Thus, by uniqueness of weak limits, we have, v =
A∇u. Hence, we have

Aµ∇uµ ⇀ A∇u weakly in L2
(
(0, T ) ;L2 (Ω;Rn)

)
.

This implies

ˆ T

0

ˆ
Ω

〈Aµ∇uµ,∇φ〉dxdt→
ˆ T

0

ˆ
Ω

〈Aµ∇uµ,∇φ〉dxdt

for any φ ∈ L2
(
(0, T );H1

0 (Ω)
)
. Easier arguments would show that

ˆ T

0

ˆ
Ω

〈Bµ, uµ〉φdxdt→
ˆ T

0

ˆ
Ω

〈B, u〉φdxdt

and
ˆ T

0

ˆ
Ω

cµuµφdxdt→
ˆ T

0

ˆ
Ω

cuφdxdt
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for any φ ∈ L2
(
(0, T );H1

0 (Ω)
)
.

Step 2: Galerkin approximations Hence for the rest of the proof, we
would assume

f ∈ C∞
(
ΩT
)
, F ∈ C∞

(
ΩT ;Rn

)
and g ∈ C∞

(
Ω
)
.

Now we use the Galerkin approximations. Let {ψk}k∈N be the eigenfunctions
of the Dirichlet Laplacian on Ω, i.e. for each k ∈ N, ψk is the weak solution to{

−∆ψk = λkψk in Ω,

ψk = 0 on ∂Ω,

where 0 < λ1 < λ2 ≤ . . . be the sequence of eigenvalues ( repeated with mul-
tiplicity ). Assume that we have orthogonalized the sequence in H1

0 (Ω) and
orthonormalized in L2 (Ω) . Define

Xm := Span {ψ1, ψ2, . . . , ψm} ⊂ H1
0 (Ω) for any m ∈ N.

We plan to project the problem (29) to the subspace Xm. More precisely, for
each m ∈ N, let

fm (x, t) :=

m∑
k=1

(ˆ
Ω

f (x, t)ψk (x) dx

)
ψk (x) ,

Fm (x, t) :=

m∑
k=1

(ˆ
Ω

F (x, t)ψk (x) dx

)
ψk (x) ,

gm (x) :=

m∑
k=1

(ˆ
Ω

g (x)ψk (x) dx

)
ψk (x) .

We want to find functions αk,m : [0, T ]→ R such that

um (x, t) =

m∑
k=1

αk,m (t)ψk (x) (31)

is a weak solution to
umt − div (A∇um) + 〈B,∇um〉+ cum = fm − divFm in ΩT ,

um = 0 on ∂Ω× [0, T ],

um = gm on Ω× {t = 0} .
(32)

Using um (x, 0) = gm and the fact that {ψk}k∈N is an orthonormal Schauder
basis in L2 (Ω) , we see that we must have

αk,m (0) =

ˆ
Ω

g (x)ψk (x) dx for all 1 ≤ k ≤ m. (33)
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Now fix a 1 ≤ i ≤ m and multiplying the equation by ψi (x) and integrating by
parts, we have

ˆ
Ω

[umt ψi + 〈A∇um,∇ψi〉+ 〈B,∇um〉ψi + cumψi] dx

=

ˆ
Ω

[fmψi + 〈Fm,∇ψi〉] dx (34)

Now, from (31), we calculate

umt =

m∑
k=1

d

dt

(
αk,m

)
(t)ψk (x) ,

∇um =

m∑
k=1

αk,m (t)∇ψk (x)

Since {ψk}k∈N is orthonormal in L2 (Ω) , we have

ˆ
Ω

umt ψi (x) =
d

dt

(
αi,m

)
(t) ,

ˆ
Ω

cumψi = c (x, t)αi,m (t) ,

ˆ
Ω

fmψi =

ˆ
Ω

f (x, t)ψi.

Substituting in (34), we deduce

d

dt

(
αi,m

)
(t)

= −
m∑
k=1

αk,m (t)

ˆ
Ω

[〈A (x, t)∇ψk,∇ψi〉+ 〈B (x, t) ,∇ψk〉ψi]

− c (x, t)αi,m (t) +

ˆ
Ω

f (x, t)ψi

+

m∑
k=1

ˆ
Ω

〈ˆ
Ω

F (x, t)ψk (x) dx,∇ψi
〉
ψk.

Since the argument can be repeated for every 1 ≤ i ≤ m, we get the following
initial value problem for the system of m linear ODEs

d

dt
αm (t) = Pm (t)α (t) + qm (t) ,

αm (0) = αm0 ,
(35)

where αm (t) =
{
αi,m (t)

}
1≤i≤m , q

m (t) =
{
qi,m (t)

}
1≤i≤m , are m-vector fields

and Pm (t) =
{
Pmij (t)

}
1≤i,j≤m , is an m×m matrix field, αm0 =

{
αi,m0

}
1≤i≤m
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is a fixed vector in Rm and

αi,m0 =

ˆ
Ω

gψi,

qi,m (t) =

ˆ
Ω

f (x, t)ψi +

m∑
k=1

ˆ
Ω

〈ˆ
Ω

F (x, t)ψk (x) dx,∇ψi
〉
ψk,

Pmij (t) = −
ˆ

Ω

[〈A (x, t)∇ψj ,∇ψi〉+ 〈B (x, t) ,∇ψj〉ψi]− c (x, t) δij ,

for all 1 ≤ i, j ≤ m, where δij is the Kronecker delta. Now since this is an
IVP for a system of linear ODEs with smooth coefficients, there exists a unique
smooth solution. Thus, we can construct a smooth um which is a weak solution
to (32). Now since by Bessel’s inequality, we have

fm → f in L2
(
(0, T ) ;L2 (Ω)

)
,

Fm → F in L2
(
(0, T ) ;L2 (Ω;Rn)

)
,

gm → g in L2 (Ω) .

Thus, using the apriori estimate (25) and arguing as in Step 1, we conclude that
up to the extraction of a subsequence that we do not relabel, we have

um ⇀ u in L2
(
(0, T ) ;H1

0 (Ω)
)
,

umt ⇀ u in L2
(
(0, T ) ;H−1 (Ω)

)
,

um → u in C
(
[0, T ] ;L2 (Ω)

)
,

for some u ∈ L2
(
(0, T );H1

0 (Ω)
)
∩C

(
[0, T ] ;L2 (Ω)

)
with ut ∈ L2

(
(0, T );H−1 (Ω)

)
and u (0) = g. It is easy to verify that u is a weak solution of (29) with data
f, F, g, A,B, c and satisfies the estimate (25). This completes the proof.

2.2 Higher L2 estimates

Now we want to derive L2 estimates for higher derivatives. However, since the
equation intermingles spatial derivatives and time derivative, to derive higher
estimates, we need to have some compatibility condition between the initial
data g and time derivatives of source term. We begin with L2 estimates for the
Hessian, which requires a rather mild compatibility, i.e. g to have zero trace on
the boundary.

Theorem 39 (Apriori L2 estimate for D2u). Let Ω ⊂ Rn be open, bounded and
smooth. Let T > 0. Let

A = A (x, t) := (aij (x, t))1≤i,j≤n ∈W
1,∞ (ΩT ;Rn×n

)
,

B = B (x, t) := (bi (x, t))1≤i≤n ∈W
1,∞ (ΩT ;Rn) ,

c = c (x, t) ∈W 1,∞ (ΩT ) .
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Let A be uniformly elliptic in ΩT with constant λ > 0, i.e. there exists some
constant λ > 0 such that we have

〈A (x, t) ξ, ξ〉 ≥ λ |ξ|2

for a.e. x ∈ Ω and a.e. t ∈ (0, T ). Let u ∈ C∞
(
ΩT
)

be a smooth solution to
ut − div (A∇u) + 〈B,∇u〉+ cu = f − divx F in ΩT ,

u = 0 on ∂Ω× [0, T ],

u = g on Ω× {t = 0} .

(i) Suppose

g ∈ H1
0 (Ω) , f ∈ L2

(
(0, T ) ;L2 (Ω)

)
, F ∈ L2

(
(0, T ) ;H1 (Ω;Rn)

)
.

Then there exists a constant

C = C (λ, ‖A‖W 1,∞ , ‖B‖W 1,∞ , ‖c‖W 1,∞ ,Ω, T ) > 0

such that

sup
0≤t≤T

‖u (t)‖H1
0 (Ω) + ‖u‖L2((0,T );H2(Ω)) + ‖ut‖L2((0,T );L2(Ω))

≤ C
(
‖f‖L2((0,T );L2(Ω)) + ‖F‖L2((0,T );H1(Ω;Rn)) + ‖g‖H1

0 (Ω)

)
. (36)

(ii) Suppose

g ∈ H1
0 (Ω) ∩H2 (Ω) , f ∈ H1

(
(0, T ) ;L2 (Ω)

)
,

F ∈ H1
(
(0, T ) ;H1 (Ω;Rn)

)
.

Then there exists a constant

C = C (λ, ‖A‖W 1,∞ , ‖B‖W 1,∞ , ‖c‖W 1,∞ ,Ω, T ) > 0

such that

sup
0≤t≤T

(
‖u (t)‖H2(Ω) + ‖ut (t)‖L2(Ω)

)
+ ‖ut‖L2((0,T );H1

0 (Ω)) + ‖utt‖L2((0,T );H−1(Ω))

≤ C
(
‖f‖L2((0,T );L2(Ω)) + ‖F‖L2((0,T );H1(Ω;Rn)) + ‖g‖H1

0 (Ω)

)
.

(37)

Proof. By a similar approximation argument, we can assume if necessary that
A,B, c are also smooth. So we would not care about smoothness at all while
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deriving the apriori estimates. Also note that for both parts, we can just assume
F ≡ 0, as the hypothesis allows us to absorb the term divx F into f . We begin
by proving Part (i).

Part (i): Multiply the equation by ut and for a.e. 0 < s < T, integrate
over Ω and integrate by parts. Note that ut also vanishes on ∂Ω, as u ≡ 0 on
∂Ω for all time 0 ≤ t ≤ T, ( for t = 0, note carefully that this is implied by the
explicit assumption g ∈ H1

0 ), its time derivative must also vanish. Hence we
obtain

0 =

ˆ
Ω

|ut|2 +

ˆ
Ω

〈A∇u,∇ut〉+

ˆ
Ω

〈B,∇u〉ut +

ˆ
Ω

cuut −
ˆ

Ω

fut

≥
ˆ

Ω

|ut|2 +
1

2

d

dt

(ˆ
Ω

〈A∇u,∇u〉
)
− 1

2

ˆ
Ω

〈At∇u,∇u〉 − (|I1|+ |I2|+ |I3|) .

Now, we have

|I1| =
∣∣∣∣ˆ

Ω

〈B,∇u〉ut
∣∣∣∣ ≤ ˆ

Ω

|〈B,∇u〉ut|

≤ ‖B‖L∞
ˆ

Ω

|∇u| |ut| ≤ ε
ˆ

Ω

|ut|2 + C

ˆ
Ω

|∇u|2 .

|I2| =
∣∣∣∣ˆ

Ω

cuut

∣∣∣∣ ≤ ‖c‖L∞ ˆ
Ω

|∇u| |ut| ≤ ε
ˆ

Ω

|ut|2 + C

ˆ
Ω

|∇u|2 .

|I3| =
∣∣∣∣ˆ

Ω

fut

∣∣∣∣ ≤ ˆ
Ω

|f | |ut| ≤ ε
ˆ

Ω

|ut|2 + C

ˆ
Ω

|f |2 .

We also have ∣∣∣∣12
ˆ

Ω

〈At∇u,∇u〉
∣∣∣∣ ≤ 1

2
‖At‖L∞

ˆ
Ω

|∇u|2 .

Choosing ε > 0 small enough, we deduceˆ
Ω

|ut|2 +
d

dt

(ˆ
Ω

〈A∇u,∇u〉
)
≤ C1

(ˆ
Ω

|∇u|2 +

ˆ
Ω

|f |2
)
.

for some constant C1 > 0. Integrating with respect to t from 0 to s, where
0 < s < T, we deduceˆ s

0

ˆ
Ω

|ut|2 +

ˆ
Ω

〈A (s)∇u (s) ,∇u (s)〉 −
ˆ

Ω

〈A (0)∇u (0) ,∇u (0)〉

≤ C
(ˆ s

0

ˆ
Ω

|f |2 dt+

ˆ s

0

ˆ
Ω

|∇u|2 dt

)
≤ C

(ˆ T

0

ˆ
Ω

|f |2 dt+

ˆ T

0

ˆ
Ω

|∇u|2 dt

)
.

= C
(
‖f‖2L2((0,T );L2(Ω)) + ‖u‖2L2((0,T );H1

0 (Ω))

)
.
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Using ellipticity of A (s) , we deduce

ˆ s

0

ˆ
Ω

|ut|2 + λ

ˆ
Ω

|∇u (s)|2

≤
ˆ s

0

ˆ
Ω

|ut|2 +

ˆ
Ω

〈A (s)∇u (s) ,∇u (s)〉

≤
ˆ

Ω

〈A (0)∇u (0) ,∇u (0)〉+ C
(
‖f‖2L2((0,T );L2(Ω)) + ‖u‖2L2((0,T );H1

0 (Ω))

)
≤
ˆ

Ω

〈A (0)∇g,∇g〉+ C
(
‖f‖2L2((0,T );L2(Ω)) + ‖u‖2L2((0,T );H1

0 (Ω))

)
≤ ‖A‖L∞

ˆ
Ω

|∇g|2 + C
(
‖f‖2L2((0,T );L2(Ω)) + ‖u‖2L2((0,T );H1

0 (Ω))

)
≤ C

(
‖g‖2H1

0 (Ω) + ‖f‖2L2((0,T );L2(Ω)) + ‖u‖2L2((0,T );H1
0 (Ω))

)
.

Hence, taking supremum over 0 ≤ s ≤ T, we deduce

sup
0≤t≤T

‖u (t)‖2H1
0 (Ω) + ‖ut‖2L2((0,T );L2(Ω))

≤ C
(
‖g‖2H1

0 (Ω) + ‖f‖2L2((0,T );L2(Ω)) + ‖u‖2L2((0,T );H1
0 (Ω))

)
. (38)

On the other hand, for each 0 < s < T, we have

−div (A (s)∇u (s)) + 〈B (s) ,∇u (s)〉+ c (s)u (s) = f (s)− ut (s) in Ω,

Since the LHS of the above equation is an uniformly elliptic operator, using
elliptic regularity, more precisely, up to the boundary W 2,2 estimates imply the
estimate

ˆ
Ω

∣∣D2u (s)
∣∣2 ≤ C (ˆ

Ω

|∇u (s)|2 +

ˆ
Ω

|f (s)|2 +

ˆ
Ω

|ut (s)|2
)
. (39)

Integrating with respect to s from 0 to T, we arrive at

‖u‖2L2((0,T );H2(Ω))

≤ C
(
‖u‖2L2((0,T );H1

0 (Ω)) + ‖f‖2L2((0,T );L2(Ω)) + ‖ut‖2L2((0,T );L2(Ω))

)
. (40)

Now, combining (38), (40) with (25), we obtain (36). This completes the proof
of (i).

Part (ii): Differentiating the equation with respect to time, we have

utt − div (A∇ut) + 〈B,∇ut〉+ cut

= ft + div (At∇u)− 〈Bt,∇u〉 − ctu. (41)
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Multiplying this equation by ut and for a.e. 0 < s < T, integrating over Ω and
integrating by parts, we deduce

0 =

ˆ
Ω

〈utt, ut〉+

ˆ
Ω

〈A∇ut,∇ut〉+

ˆ
Ω

〈B,∇ut〉ut +

ˆ
Ω

c |ut|2

−
ˆ

Ω

ftut −
ˆ

Ω

〈At∇u,∇ut〉 −
ˆ

Ω

〈Bt∇u〉ut −
ˆ

Ω

ctuut

≥ 1

2

d

dt

(ˆ
Ω

|ut|2
)

+ λ

ˆ
Ω

|∇ut|2 − (|I1|+ |I2|+ |I3|+ |I4|+ |I5|+ |I6|) .

Now, we have

|I1| =
∣∣∣∣ˆ

Ω

〈B,∇ut〉ut
∣∣∣∣ ≤ ˆ

Ω

|〈B,∇ut〉ut|

≤ ‖B‖L∞
ˆ

Ω

|∇ut| |ut| ≤ ε
ˆ

Ω

|∇ut|2 + C

ˆ
Ω

|ut|2 .

|I2| =
∣∣∣∣ˆ

Ω

c |ut|2
∣∣∣∣ ≤ ‖c‖L∞ ˆ

Ω

|ut|2 .

|I3| =
∣∣∣∣ˆ

Ω

ftut

∣∣∣∣ ≤ ˆ
Ω

|ft| |ut| ≤ C
ˆ

Ω

|ut|2 + C

ˆ
Ω

|ft|2 .

|I4| =
∣∣∣∣ˆ

Ω

〈At∇u,∇ut〉
∣∣∣∣ ≤ ‖At‖L∞ ˆ

Ω

|∇u| |∇ut| ≤ ε
ˆ

Ω

|∇ut|2 + C

ˆ
Ω

|∇u|2 .

|I5| =
∣∣∣∣ˆ

Ω

〈Bt,∇u〉ut
∣∣∣∣ ≤ ˆ

Ω

|〈Bt,∇u〉ut|

≤ ‖Bt‖L∞
ˆ

Ω

|∇u| |ut| ≤ ε
ˆ

Ω

|∇ut|2 + C

ˆ
Ω

|ut|2 .

|I6| =
∣∣∣∣ˆ

Ω

ctuut

∣∣∣∣ ≤ ‖ct‖L∞ ˆ
Ω

|ut| |u|

≤ C
ˆ

Ω

|u|2 + C

ˆ
Ω

|ut|2 ≤ C
ˆ

Ω

|∇u|2 + C

ˆ
Ω

|ut|2 ,

where we have used the Poincaré inequality in the last line. Choosing ε > 0
small enough, we deduce

d

dt

(ˆ
Ω

|ut|2
)

+ λ

ˆ
Ω

|∇ut|2 ≤ C1

(ˆ
Ω

|∇u|2 +

ˆ
Ω

|ut|2 +

ˆ
Ω

|ft|2
)
.
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for some constant C1 > 0. But this implies

d

dt

(
e−C1t

ˆ
Ω

|ut|2
)

= e−C1t

[
d

dt

(ˆ
Ω

|ut|2
)
− C1

ˆ
Ω

|ut|2
]

≤ e−C1t

[
C1

(ˆ
Ω

|ft|2 +

ˆ
Ω

|∇u|2
)
− λ
ˆ

Ω

|∇ut|2
]

So we arrive at

d

dt

(
e−C1t

ˆ
Ω

|ut|2
)

+ λe−C1t

ˆ
Ω

|∇ut|2 ≤ C1e
−C1t

(ˆ
Ω

|ft|2 +

ˆ
Ω

|∇u|2
)

≤ C1

(ˆ
Ω

|ft|2 +

ˆ
Ω

|∇u|2
)

as C1t > 0 and thus e−C1t < 1. Integrating with respect to t from 0 to s, where
0 < s < T, we deduce

e−C1s

ˆ
Ω

|ut (s)|2 −
ˆ

Ω

|ut (0)|2 + λ

ˆ s

0

e−C1t

ˆ
Ω

|∇ut (t)|2 dt

≤ C
(ˆ s

0

ˆ
Ω

|ft|2 dt+

ˆ s

0

ˆ
Ω

|∇u|2 dt

)
≤ C

(ˆ T

0

ˆ
Ω

|ft|2 dt+

ˆ T

0

ˆ
Ω

|∇u|2 dt

)
.

= C
(
‖ft‖2L2((0,T );L2(Ω)) + ‖∇u‖2L2((0,T );H1

0 (Ω))

)
.

Thus, using the obvious estimate e−C1T < e−C1t for all 0 ≤ t ≤ T, we have

e−C1s

ˆ
Ω

|ut (s)|2 + λe−C1T

ˆ s

0

ˆ
Ω

|∇ut (t)|2 dt

≤ C

(ˆ T

0

ˆ
Ω

|ft|2 dt+

ˆ T

0

ˆ
Ω

|∇u|2 dt

)
+

ˆ
Ω

|ut (0)|2 .

Thus,

ˆ
Ω

|ut (s)|2 + λe−C1T

ˆ s

0

ˆ
Ω

|∇ut (t)|2 dt

≤
ˆ

Ω

|ut (s)|2 + λe−C1(T−s)
ˆ s

0

ˆ
Ω

|∇ut (t)|2 dt

≤ CeC1s

(ˆ T

0

ˆ
Ω

|ft|2 dt+

ˆ T

0

ˆ
Ω

|∇u|2 dt+

ˆ
Ω

|ut (0)|2
)

≤ CeC1T

(ˆ T

0

ˆ
Ω

|ft|2 dt+

ˆ T

0

ˆ
Ω

|∇u|2 dt+

ˆ
Ω

|ut (0)|2
)
.
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Now, we want to estimate the last integral on the right. From the equation,
passing to the limits as t→ 0, we have

ut (0) = f (0)− L0u (0) = f (0)− L0g,

where the uniformly elliptic spatial differential operator L0 is defined by

L0w := −div (A (0)∇w) + 〈B (0) ,∇w〉+ c (0)w.

Since this is a second order operator involving only the spatial variables, it is
easy to see that we have the estimate

ˆ
Ω

|L0g|2 ≤ C ‖g‖2H2(Ω) .

Thus, we have

ˆ
Ω

|ut (0)|2 ≤
ˆ

Ω

|f (0)|2 +

ˆ
Ω

|L0g (0)|2 ≤
ˆ

Ω

|f (0)|2 + C ‖g‖2H2(Ω) .

Plugging this estimate back into the last one, we deduce

ˆ
Ω

|ut (s)|2 + λe−C1T

ˆ s

0

ˆ
Ω

|∇ut (t)|2 dt

≤ CeC1T

(ˆ T

0

ˆ
Ω

|ft|2 dt+

ˆ T

0

ˆ
Ω

|∇u|2 dt+

ˆ
Ω

|ut (0)|2
)

≤ CeC1T

(ˆ T

0

ˆ
Ω

|ft|2 dt+

ˆ T

0

ˆ
Ω

|∇u|2 dt+

ˆ
Ω

|f (0)|2 + ‖g‖2H2(Ω)

)

≤ CeC1T

(
‖f‖2H1((0,T );L2(Ω)) +

ˆ T

0

ˆ
Ω

|∇u|2 dt+ ‖g‖2H2(Ω)

)
.

Taking supremum over 0 ≤ s ≤ T, we deduce

sup
0≤t≤T

‖ut (t)‖2L2(Ω) + ‖ut‖2L2((0,T );H1
0 (Ω))

≤ C
(
‖f‖2H1((0,T );L2(Ω)) + ‖u‖2L2((0,T );H1

0 (Ω)) + ‖g‖2H2(Ω)

)
. (42)

Now multiplying the equation (41) by φ ∈ L2
(
(0, T );H1

0 (Ω)
)

and integrat-
ing over Ω and integrating by parts, we have

0 =

ˆ
Ω

uttφ+

ˆ
Ω

〈A∇ut,∇φ〉+

ˆ
Ω

〈B,∇ut〉φ+

ˆ
Ω

cutφ−
ˆ

Ω

ftφ

+

ˆ
Ω

〈At∇u,∇φ〉+

ˆ
Ω

〈Bt,∇u〉φ+

ˆ
Ω

ctuφ.
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Hence, we deduce∣∣∣∣ˆ
Ω

uttφ

∣∣∣∣ ≤ |I1|+ |I2|+ |I3|+ |I4|+ |I5|+ |I6|+ |I7| ,
where we have

|I1| =
∣∣∣∣ˆ

Ω

〈A∇ut,∇φ〉
∣∣∣∣ ≤ ‖A‖L∞ ‖∇ut‖L2(Ω) ‖∇φ‖L2(Ω) ,

|I2| =
∣∣∣∣ˆ

Ω

〈B,∇ut〉φ
∣∣∣∣ ≤ ‖B‖L∞ ˆ

Ω

|∇ut| |φ| ≤ ‖B‖L∞ ‖∇ut‖L2(Ω) ‖φ‖L2(Ω) ,

|I3| =
∣∣∣∣ˆ

Ω

cutφ

∣∣∣∣ ≤ ‖c‖L∞ ˆ
Ω

|ut| |φ| ≤ ‖c‖L∞ ‖ut‖L2(Ω) ‖φ‖L2(Ω) ,

|I4| =
∣∣∣∣ˆ

Ω

ftφ

∣∣∣∣ ≤ ˆ
Ω

|ft| |φ| ≤ ‖ft‖L2(Ω) ‖φ‖L2(Ω) ,

|I5| =
∣∣∣∣ˆ

Ω

〈At∇u,∇φ〉
∣∣∣∣ ≤ ‖At‖L∞ ‖∇u‖L2(Ω) ‖∇φ‖L2(Ω) ,

|I6| =
∣∣∣∣ˆ

Ω

〈Bt,∇u〉φ
∣∣∣∣ ≤ ‖Bt‖L∞ ‖∇u‖L2(Ω) ‖φ‖L2(Ω) ,

|I7| =
∣∣∣∣ˆ

Ω

ctuφ

∣∣∣∣ ≤ ‖ct‖L∞ ‖u‖L2(Ω) ‖φ‖L2(Ω) .

This implies,∣∣∣∣ˆ
Ω

uttφ

∣∣∣∣ ≤ C (‖ut (t)‖H1
0 (Ω) + ‖ft (t)‖L2(Ω)

)
‖φ (t)‖H1

0 (Ω)

By the dual characterization of the H−1 (Ω) norm, this means

‖utt (t)‖H−1(Ω) ≤ C
(
‖ut (t)‖H1

0 (Ω) + ‖ft (t)‖L2(Ω)

)
.

Squaring both sides and integrating with respect to t from 0 to T, we derive

‖utt‖2L2((0,T );H−1(Ω)) ≤ C
(
‖ut‖2L2((0,T );H1

0 (Ω)) + ‖f‖2H1((0,T );L2(Ω))

)
.

Combined with (42), this implies the estimate

‖utt‖2L2((0,T );H−1(Ω))

≤ C
(
‖f‖2H1((0,T );L2(Ω)) + ‖u‖2L2((0,T );H1

0 (Ω)) + ‖g‖2H2(Ω)

)
. (43)

Now Sobolev embedding for Sobolev spaces involving time implies (38)
Now (42), (43) and the theory of time-dependent Sobolev spaces again im-

plies that {
ut ∈ L2

(
(0, T );H1

0 (Ω)
)

utt ∈ L2
(
(0, T );H−1 (Ω)

) ⇒ ut ∈ C
(
[0, T ] ;L2 (Ω)

)

48



along with the estimate

max
0≤t≤T

‖ut (t)‖L2(Ω)

≤ C
(
‖ut‖L2((0,T );H1

0 (Ω)) + ‖utt‖L2((0,T );H−1(Ω))

)
≤ C

(
‖f‖H1((0,T );L2(Ω)) + ‖u‖L2((0,T );H1

0 (Ω)) + ‖g‖H2(Ω)

)
. (44)

But now returning to (39) and taking supremum over 0 ≤ s ≤ T, we get

sup
0≤t≤T

‖u (t)‖H2(Ω) ≤ C sup
0≤t≤T

(
‖u (t)‖H1

0 (Ω) + ‖f (t)‖L2(Ω) + ‖ut (t)‖L2(Ω)

)
.

(45)

Now the estimates (25), (38), (26), (42), (43) and (45) together implies (37).
This completes the proof.

These estimates can be iterated to gain higher and higher regularity if
A,B, c, f, g are sufficiently regular and f and g satisfy the compatibility condi-
tions. See Theorem 6, Chapter 7 in [1].
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