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1 Newtonian potential

1.1 Fourier transform and L2 estimate

Let n ≥ 2 be an integer and let f ∈ C∞c (Rn) and consider the following problem

−∆u = f in Rn. (1)

We are interested in estimating the second derivatives of u in terms of f in
Lp norms. To get an idea of what we are up against, first let us gather some
information. Taking Fourier transform on both sides, we arrive at

f̂ = −

 n∑
j=1

(iξj)
2

 û = |ξ|2 û.

Thus, at least formally, we have

û =
1

|ξ|2
f̂ . (2)

This is quite useful in many respects. We would soon use this to write down a
fundamental solution of the Laplacian. But for now, notice that by properties
of Fourier transform, we have(

∂2

∂xj∂xk
u

)̂
= (iξj) (iξj) û = ξjξkû =

ξjξk

|ξ|2
f̂ .
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Using Parseval identity, we have∥∥∥∥ ∂2u

∂xj∂xk

∥∥∥∥2

L2(Rn)

=

∥∥∥∥∥
(

∂2

∂xj∂xk
u

)̂∥∥∥∥∥
2

L2(Rn)

=

ˆ
Rn

ξ2
j ξ

2
k

|ξ|4
∣∣∣f̂ (ξ)

∣∣∣2 dξ

≤
ˆ
Rn

ξ2
j ξ

2
k

|ξ|4
∣∣∣f̂ (ξ)

∣∣∣2 dξ = ‖f‖2L2(Rn) .

So far, so good. We have at least managed our goal in this simple case for p = 2.
However, our technique here can only work for L2, as we have made crucial use
of the Parseval identity. We have also made crucial use of the fact that the
‘Fourier multiplier’ is bounded, i.e.

m (ξ) =
ξjξk

|ξ|2
∈ L∞ (Rn) .

To understand the significance of this, let us look at our problem differently.
Assuming the solution u to our problem is unique ( this can be ensured by quite
mild extra conditions, e.g. by requiring u ∈ L2 (Rn) ) and smooth ( this we
shall show momentarily ) define the linear operator Tjk : C∞c (Rn)→ C∞ (Rn)
by

Tjkf :=
∂2u

∂xj∂xk
,

where u is the unique solution of (1). What we have proved now is that we have
the estimate

‖Tjkf‖L2(Rn) ≤ ‖f‖L2(Rn) .

Thus, Tjk extends as a bounded linear operator from L2 (Rn) to itself. To see
what kind of an operator this is, we suppose we can find a ‘function’ Kjk such
that

K̂jk =
1

(2π)
n
2
m (ξ) =

1

(2π)
n
2

ξjξk

|ξ|2
.

Then we can write, at least formally,

Tjkf =
∂2u

∂xj∂xk
=

[(
∂2u

∂xj∂xk

)ˆ
]ˇ

=
(

(2π)
n
2 K̂jkf̂

)ˇ

= Kjk ∗ f.

Hence, at least formally, Tjk is an integral operator of convolution type, with
a kernel Kjk. Unfortunately, Kjk is not really a ‘function’, not even a locally
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integrable one and the ‘convolution’ is quite problematic to define. To under-
stand this kernel better, we first try to find a ‘kernel’ for u itself. Suppose we
can find a ‘function’ N such that

N̂ =
1

(2π)
n
2

1

|ξ|2
.

Then we can write

u = (û)
ˇ

=

(
1

|ξ|2
f̂

)ˇ

=
(

(2π)
n
2 N̂2f̂

)ˇ

=
(

[N ∗ f ]
ˆ
)ˇ

= N ∗ f.

Trying to find N by inverse Fourier transform is also not trivial at all. The
reason is very simple. There simply is no such function in L1 (Rn)! It is easy to
check that the function

ξ 7→ 1

|ξ|2

is not in L∞ (Rn) nor in L2 (Rn) . So if there exists any such function N , such a
function clearly can not be either in L1 (Rn) or in L2 (Rn) . Nonetheless, luckily
for us, there exists a locally integrable function N ∈ L1

loc (Rn) with these
properties when n ≥ 3.

Lemma 1. Let α ∈ R such that 0 < α < n. Let

f (x) =
1

|x|α
for x ∈ Rn.

Then we have

f̂ (ξ) =
2
n
2 Γ
(
n−α

2

)
2αΓ

(
α
2

) 1

|x|n−α
.

The proof of the lemma is beyond the scope of this course, as this requires
us to work with tempered distributions.

Returning back to our problem, we see that

N (x) =
c2

|x|n−2

for some constant c2 > 0. Thus, if we define

u (x) := c2

ˆ
Rn

f (y)

|x− y|n−2 dy for x ∈ Rn,

this solves (1), at least in the sense of tempered distributions. Proving that this
defines a strong solution is actually not immediate. First we note that

c2 =
1

(n− 2) |Sn−1|
.

Thus, the formula for u is

u (x) :=
1

(n− 2) |Sn−1|

ˆ
Rn

f (y)

|x− y|n−2 dy for x ∈ Rn (3)
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Definition 2. The kernel

N (x) :=
1

(n− 2) |Sn−1|
1

|x|n−2 for all x ∈ Rn \ {0} ,

is called the Newtonian kernel in n dimensions for n ≥ 3 and the operator

Nf := N ∗ f

is called the Newtonian potential for f .

As the singularity of kernel is locally integrable around the origin, due to
the fact that n − 2 < n, the integral defining the convolution operator Nf is
actually what is called a ‘fractional integral’ and is not a singular integral. These
integrals exist and are easy to estimate.

1.2 Fundamental solution and singular integrals

Now we prove that the formal candidate formula (3) indeed defines a smooth
solution of (1).

Theorem 3. Let n ≥ 3. For any f ∈ C∞c (Rn) , the function u defined by (3)
is C∞ (Rn) and satisfies the Poisson equation in the whole space

−∆u = f in Rn. (4)

Proof. We need to show that the function

u (x) =

ˆ
Rn
N (x− y) f (y) dy

solves (4) for f ∈ C∞c (Rn) . First we note that N is locally integrable. Thus,
by properties of convolution and the fact that f has compact support implies
that

Dαu = N ∗Dαf

and thus u ∈ C∞ (Rn) . This also yields,

∆u = N ∗∆f.

Now we want to show that the RHS is actually equal to −f. Now note that by
simple computations, formally we have

∂N
∂xj

(x) = − 1

|Sn−1|
xj
|x|n

and
∂2N
∂xj∂xk

(x) = − 1

|Sn−1|

[
δjk
|x|n

− nxjxk

|x|n+2

]
,

where δjk is the Kronecker delta. From this, we deduce the following growths

|∇N | ' c

|x|n−1 and
∣∣∇2N

∣∣ ' c

|x|n
.
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So the second derivatives ofN are not locally integrable around the origin. Since
the only trouble is at the origin, to isolate the trouble, we pick an arbitrary ε > 0
and write

N ∗∆f =

ˆ
Rn
N (y) ∆xf (x− y) dy

=

ˆ
B(0,ε)

N (y) ∆xf (x− y) dy +

ˆ
Rn\B(0,ε)

N (y) ∆xf (x− y) dy

:= Iε + Jε.

Iε can be easily estimated by the local integrability of N . Indeed, we have

|Iε| ≤
∥∥∇2f

∥∥
L∞(Rn)

ˆ
B(0,ε)

|N (y)|dy ≤ Cε2.

Thus,
Iε → 0 as ε→ 0.

For computing Jε, note that N is smooth away from the origin and thus, inte-
grating by parts twice, we obtain

Jε =

ˆ
Rn\B(0,ε)

N (y) ∆xf (x− y) dy

=

ˆ
Rn\B(0,ε)

N (y) (−1)
2

∆yf (x− y) dy

=

ˆ
Rn\B(0,ε)

N (y) ∆yf (x− y) dy

=

ˆ
Rn\B(0,ε)

∆N (y) f (x− y) dy +

ˆ
∂B(0,ε)

N (y)
∂f

∂ν
(x− y) dΣy

−
ˆ
∂B(0,ε)

∂N
∂ν

(y) f (x− y) dΣy,

where ν denotes the inward normal on ∂B (0, ε) , since that is the outward
normal from the side of Rn \ B (0, ε) . Now it is easy to check that ∆N = 0 in
Rn \B (0, ε) and thus we have

Jε =

ˆ
∂B(0,ε)

N (y)
∂f

∂ν
(x− y) dΣy −

ˆ
∂B(0,ε)

∂N
∂ν

(y) f (x− y) dΣy

:= J1
ε + J2

ε .

The estimate of J1
ε is similar to Iε. We have∣∣J1
ε

∣∣ ≤ ‖∇f‖L∞(Rn)

ˆ
∂B(0,ε)

|N (y)|dΣy ≤ Cε.

Thus,
J1
ε → 0 as ε→ 0.
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So we have shown

N ∗∆f = lim
ε→0

J2
ε

= − lim
ε→0

ˆ
∂B(0,ε)

∂N
∂ν

(y) f (x− y) dΣy

= − lim
ε→0

ˆ
∂B(0,ε)

〈ν (y) ,∇N (y)〉 f (x− y) dΣy

= − lim
ε→0

ˆ
∂B(0,ε)

〈
− y

|y|
,− 1

|Sn−1|
y

|y|n
〉
f (x− y) dΣy

= − 1

|Sn−1|
lim
ε→0

ˆ
∂B(0,ε)

1

|y|n−1 f (x− y) dΣy

= − lim
ε→0

(
1

|Sn−1| εn−1

ˆ
∂B(0,ε)

f (x− y) dΣy

)

= − lim
ε→0

 
∂B(0,ε)

f (x− y) dΣy

= −f (x) .

This completes the proof.

From what we have proved above, clearly, we have

∂2u

∂xj∂xk
=

∂2

∂xj∂xk
[N ∗ f ] =

∂2N
∂xj∂xk

∗ f,

where the last equality is only formal so far. Thus, taking our clue from this,
our guess for the kernel Kjk for the operator Tjk is given by

Kjk (x) := − 1

|Sn−1|

[
δjk
|x|n

− nxjxk

|x|n+2

]
.

Thus, we can now try to ‘define’ our operator Tjk as

Tjkf := Kjk ∗ f.

More explicitly,

Tjkf (x) =

[
∂2N
∂xj∂xk

∗ f
]

(x)

=

ˆ
Rn

∂2N
∂xj∂xk

(x− y) f (y) dy

= − 1

|Sn−1|

ˆ
Rn

[
δjk

|x− y|n
− n (xj − yj) (xk − yk)

|x− y|n+2

]
f (y) dy.
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To get an idea of the trouble, suppose for the moment that Kjk ∈ L1 (Rn) .
Then using Young’s inequality for convolutions, we would have

‖Tjkf‖Lp(Rn) = ‖Kjk ∗ f‖Lp(Rn) ≤ ‖Kjk‖L1(Rn) ‖f‖Lp(Rn)

for every 1 ≤ p ≤ ∞, i.e. including p = 1 and p = ∞. However, since Kjk

is not integrable and not even locally integrable around the origin.
Again, taking our clue from the computations for the Newtonian potential, we
want to cut out the singularity and analyze operators given by

Tεf (x) =

ˆ
Rn\Bε(x)

K (x− y) f (y) dy, (5)

where the kernel K has the form

K (x) =
θ (x)

|x|n
, (6)

where θ ∈ L∞ (Rn) is a bounded measurable homogeneous function of
degree 0. Note that in the case of the kernels Kjk above, we have

θ (x) = − 1

|Sn−1|

[
δjk −

nxjxk

|x|2

]
. (7)

Note that Tεf is a nice convolution operator with an integrable kernel for every
ε > 0. So we can hope to define the operator

Tf := lim
ε→0

Tεf,

in the sense of Cauchy principal value. However, this simply is false without
further assumptions, as the following simple result shows.

Proposition 4. Let f = 1[−1,1] and for every ε > 0, consider

Tεf (x) :=

ˆ
|x−t|>ε

f (t)

|x− t|
dt.

Then we have

lim
ε→0

Tεf (x) = +∞ for every x ∈ [−1, 1] .

The reason for this difficulty is that

lim
ε→0

ˆ
B1(0)\Bε(0)

K (x) dx = lim
ε→0

ˆ
B1(0)\Bε(0)

θ (x)

|x|n
dx

need not exist. Recalling complex analysis, one might be tempted to think
that we should cut out the singularity by some other way and not balls. First
let us prove that this is not the case.
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Proposition 5. Let Ω ⊂ Rn be any open set such that 0 ∈ Ω. Let U, V be any
two open neighborhoods of 0 in Rn. Then

lim
ε→0

ˆ
Ω\εU

θ (x)

|x|n
dx exists iff lim

ε→0

ˆ
Ω\εV

θ (x)

|x|n
dx exists.

Proof. The proof is elementary. For ε > 0 small enough, we have εU, εV ⊂ Ω.
Now we have

ˆ
Ω\εU

θ (x)

|x|n
dx−

ˆ
Ω\εV

θ (x)

|x|n
dx =

ˆ
ε(V \U)

θ (x)

|x|n
dx−

ˆ
ε(U\V )

θ (x)

|x|n
dx

=

ˆ
V \U

θ (εx)

|εx|n
εn dx−

ˆ
U\V

θ (εx)

|εx|n
εn dx

=

ˆ
V \U

θ (εx)

|x|n
dx−

ˆ
U\V

θ (εx)

|x|n
dx

=

ˆ
V \U

θ (x)

|x|n
dx−

ˆ
U\V

θ (x)

|x|n
dx.

Since the domains of integration on the right does not contain the singularity,
the result follows.

1.3 Cancellation property and L2 estimate

As we have seen above, we can not expect to make sense of the singular integrals
in the principal value sense without further hypothesis. However, for our kernel
Kjk, we have already proved the L2 estimates. So now we investigate under
what additional assumptions L2 estimates would hold. First, observe that our
kernel satisfies a remarkable property, which will turn out to be essential to
what we would be doing.

Proposition 6. For any 1 ≤ j, k ≤ n, if θ is given by (7), then we have

ˆ
Sn−1

θ (y) dΣy = 0. (8)

The proof is left as an exercise. An immediate, but very useful consequence
of this observation is the following.

Proposition 7. Let K be given (6), where θ satisfies (8). Then for any 0 <
R1 < R2 <∞, we have

ˆ
R1<|x|<R2

K (x) dx = 0.

Is this property important? Indeed it is. This is in fact equivalent to the
existence of integral of the kernel around the singularity in the principal value
sense, as we now show.
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Theorem 8. The limit

lim
ε→0

ˆ
B1(0)\Bε(0)

θ (x)

|x|n
dx

exists if and only if θ satisfies (8).

Proof. We have

ˆ
B1(0)\Bε(0)

θ (x)

|x|n
dx =

ˆ 1

ε

ρn−1

(ˆ
Sn−1

1

ρn
θ (ρζ) dΣζ

)
dρ

=

ˆ 1

ε

1

ρ
dρ

ˆ
Sn−1

θ (ζ) dΣζ

= − log ε

ˆ
Sn−1

θ (ζ) dΣζ = log

(
1

ε

)ˆ
Sn−1

θ (ζ) dΣζ .

This clearly blows up as ε→ 0 if and only if (8) is violated.

Before proceeding, we first set some terminology.

Definition 9. A function K : Rn \ {0} → R is called a Calderon-Zygmund
kernel or CZ kernel if

(a) K is positively homogeneous of degree −n, i.e.

K (x) =
θ (x/ |x|)
|x|n

for all x ∈ Rn \ {0} ,

for some measurable function θ : Sn−1 → R,

(b) θ ∈ L∞
(
Sn−1

)
and

(c) θ enjoys the cancellation property (8).

The cancellation property ( and that θ ∈ L∞ ) already implies the L2 bound-
edness ( see Theorem 7.20 in [3] for a proof ). However, we would prove the
result under additional regularity assumptions on K. There are several reasons
for this. Firstly, this would make our life a lot simpler. Secondly, the additional
assumption would anyway be needed to prove the Lp boundedness for p 6= 2
and finally, our kernel Kjk satisfies an even stronger property. Namely, our
kernel Kjk enjoys good regularity properties away from zero. More precisely,
Kjk ∈ C∞ (Rn \ {0}) and its derivative decays fast enough away from the origin.

Proposition 10. Kjk ∈ C∞ (Rn \ {0}) and there exists a constant B > 0,
depending only on n, such that

|∇Kjk (x)| ≤ B

|x|n+1 for x ∈ Rn \ {0} .
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Proof. This is just easy computation. We can directly show that we have

∂3N
∂xj∂xk∂xl

(x) = − 1

|Sn−1|

[
n (n+ 2)xjxkxl

|x|n+4 − nδjkxl

|x|n+2 −
nδjlxk

|x|n+2 −
nδklxj

|x|n+2

]
.

The estimate is obvious now.

As a consequence of this regularity, we have the following.

Proposition 11. There exists a constant C > 0 such that for every 1 ≤ j, k ≤
n, we have

sup
y 6=0

ˆ
|x|>2|y|

|Kjk (x− y)−Kjk (x)| dx ≤ C.

Proof. We have

|Kjk (x− y)−Kjk (x)| ≤ sup
t∈[0,1]

|∇Kjk (x− ty)| |y| ≤ B sup
t∈[0,1]

|y|
|x− ty|n+1 .

Now if |x| > 2 |y| , then for any t ∈ [0, 1], we have

|x| ≤ |x− ty|+ |ty| ≤ |x− ty|+ |y| ≤ |x− ty|+ 1

2
|x| .

This implies |x− ty| ≥ |x| /2 and thus, we deuce

|Kjk (x− y)−Kjk (x)| ≤ B sup
t∈[0,1]

|y|
|x− ty|n+1 ≤ 2n+1B

|y|
|x|n+1 .

Integrating, we haveˆ
|x|>2|y|

|Kjk (x− y)−Kjk (x)| dx ≤ C |y|
ˆ
|x|>2|y|

1

|x|n+1 dx = C.

This completes the proof.

Now we need another definition.

Definition 12 (Hörmander condition). A CZ kernel K is said to satisfy the
Hörmander condition if there exists a constant C > 0 such that

sup
y 6=0

ˆ
|x|>2|y|

|K (x− y)−K (x)| dx ≤ C.

Now we prove

Theorem 13 (L2 estimate). Let K be CZ kernel satisfying the Hörmander
condition. Let f ∈ L2 (Rn) . For any ε > 0, define the operators

Tεf (x) =

ˆ
Rn\Bε(x)

K (x− y) f (y) dy for a.e. x ∈ Rn.

Then we have

11



(i) For every ε > 0, Tεf ∈ L2 (Rn) and there exists a constant A2 > 0,
independent of f and ε > 0, such that we have the estimates

‖Tεf‖L2(Rn) ≤ A2 ‖f‖L2(Rn) .

(ii) Tεf converges to a limit, denoted by Tf in L2 (Rn) as ε → 0 and the
map f 7→ Tf defines a bounded linear operator from L2 (Rn) to itself and
satisfies

‖Tf‖L2(Rn) ≤ A2 ‖f‖L2(Rn) .

Proof. We first prove (i). The kernel for the operator Tε is

Kε (x) =

{
K (x) if |x| > ε,

0 if |x| ≤ ε.

Clearly, Kε is a CZ kernel for every ε > 0 and satifies the Hörmander condition
with a constant that depends on the Hörmander condition constant of K and
the dimension n, but is independent of ε. Note that Kε ∈ L2 (Rn) for every

ε > 0. We want to show that K̂ε is in L∞ (Rn) and the L∞ norm is bounded
independently of ε > 0. This would prove the uniform bound in (i).

We begin by showing that for ε = 1, the Fourier transform is a bounded
function, i.e. we show K̂1 is in L∞ (Rn) . We have

K̂1 (ξ) =

ˆ
Rn
e−i〈ξ,x〉K1 (x) dx

=

ˆ

|x|< 2π
|ξ|

e−i〈ξ,x〉K1 (x) dx+

ˆ

|x|≥ 2π
|ξ|

e−i〈ξ,x〉K1 (x) dx

=

ˆ

1<|x|< 2π
|ξ|

e−i〈ξ,x〉K1 (x) dx+

ˆ

|x|≥ 2π
|ξ|

e−i〈ξ,x〉K1 (x) dx

:= I1 + I2.

To estimate I1, we use the cancellation property. We have

I1 =

ˆ

1<|x|< 2π
|ξ|

e−i〈ξ,x〉K1 (x) dx

=

ˆ

1<|x|< 2π
|ξ|

[
e−i〈ξ,x〉 − 1

]
K1 (x) dx.

Now we use the inequality∣∣eit − 1
∣∣ ≤ |t| for t ∈ R.
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This and the Cauchy-Schwarz inequality yields the estimate

|I1| ≤
ˆ

1<|x|< 2π
|ξ|

∣∣∣e−i〈ξ,x〉 − 1
∣∣∣ |K1 (x)| dx

≤
ˆ

1<|x|< 2π
|ξ|

|〈ξ, x〉| |K1 (x)| dx

≤ |ξ|
ˆ

1<|x|< 2π
|ξ|

|x| |K1 (x)| dx

≤ C |ξ|
ˆ

1<|x|< 2π
|ξ|

|x| 1

|x|n
dx

≤ C |ξ|
ˆ

0<|x|< 2π
|ξ|

1

|x|n−1 dx = 2πC.

For I2, we plan to use the Hörmander condition. We set z = π ξ
|ξ|2 . The choice

is dictated by the fact that for this z, we have

ei〈ξ,z〉 = eiπ = −1.

Now we writeˆ
Rn
e−i〈ξ,x〉K1 (x) dx

=
1

2

ˆ
Rn
e−i〈ξ,x〉K1 (x) dx+

1

2

ˆ
Rn
e−i〈ξ,x〉K1 (x) dx

=
1

2

ˆ
Rn
e−i〈ξ,x〉K1 (x) dx+

1

2

ˆ
Rn
e−i〈ξ,y−z〉K1 (y − z) dy

=
1

2

ˆ
Rn
e−i〈ξ,x〉K1 (x) dx+

1

2

ˆ
Rn
e−i〈ξ,y〉ei〈ξ,z〉K1 (y − z) dy

=
1

2

ˆ
Rn
e−i〈ξ,x〉K1 (x) dx− 1

2

ˆ
Rn
e−i〈ξ,y〉K1 (y − z) dy

=
1

2

ˆ
Rn
e−i〈ξ,x〉 [K1 (x)−K1 (x− z)] dx

13



Thus, we have

ˆ

|x|≥ 2π
|ξ|

e−i〈ξ,x〉K1 (x) dx

=
1

2

ˆ

|x|≥ 2π
|ξ|

e−i〈ξ,x〉 [K1 (x)−K1 (x− z)] dx

+
1

2

ˆ

|x|< 2π
|ξ|

e−i〈ξ,x〉 [K1 (x)−K1 (x− z)] dx−
ˆ

|x|< 2π
|ξ|

e−i〈ξ,x〉K1 (x) dx

=
1

2

ˆ

|x|≥ 2π
|ξ|

e−i〈ξ,x〉 [K1 (x)−K1 (x− z)] dx

− 1

2

ˆ

|x|< 2π
|ξ|

e−i〈ξ,x〉K1 (x− z) dx− 1

2

ˆ

|x|< 2π
|ξ|

e−i〈ξ,x〉K1 (x) dx

=
1

2

ˆ

|x|≥ 2π
|ξ|

e−i〈ξ,x〉 [K1 (x)−K1 (x− z)] dx

+
1

2

ˆ

|y+z|< 2π
|ξ|

e−i〈ξ,y〉K1 (y) dy − 1

2

ˆ

|x|< 2π
|ξ|

e−i〈ξ,x〉K1 (x) dx

=
1

2

ˆ

|x|≥ 2π
|ξ|

e−i〈ξ,x〉 [K1 (x)−K1 (x− z)] dx+
1

2

ˆ

|x|< 2π
|ξ| ,

|x+z|< 2π
|ξ|

e−i〈ξ,x〉K1 (x) dx

:= J1 + J2.

Now note if |x+ z| < 2π/ |ξ| , then we have

|x| ≤ |x+ z|+ |z| < 2π

|ξ|
+

π

|ξ|
=

3π

|ξ|
.

14



Hence we have

|J2| ≤
1

2

∣∣∣∣∣∣∣∣∣∣∣
ˆ

|x|< 2π
|ξ| ,

|x+z|< 2π
|ξ|

e−i〈ξ,x〉K1 (x) dx

∣∣∣∣∣∣∣∣∣∣∣
≤ 1

2

ˆ

|x|< 2π
|ξ| ,

|x+z|< 2π
|ξ|

∣∣∣e−i〈ξ,x〉∣∣∣ |K1 (x)| dx

≤ C

2

ˆ 3π
|ξ|

2π
|ξ|

rn−1 1

rn
dr

=
C

2
log

(
3π/ |ξ|
2π/ |ξ|

)
=
C

2
log

(
3

2

)
.

For J1, we use the Hörmander condition to deduce

|J1| ≤
1

2

ˆ

|x|≥ 2π
|ξ|

∣∣∣e−i〈ξ,x〉∣∣∣ |K1 (x)−K1 (x− z)| dx

≤ 1

2

ˆ

|x|≥ 2π
|ξ|

|K1 (x)−K1 (x− z)| dx

=
1

2

ˆ

|x|≥2|z|

|K1 (x)−K1 (x− z)| dx ≤ C,

where in the last line, we have used the fact that |z| = π/ |ξ| .
This settles the case ε = 1. For the general case, fixe ε > 0 and note that if

we define the kernel

K ′ (x) := εnK (εx) ,

then it is easy to check that K ′ also satisfies the hypotheses of the result with
the same constants as K. Thus, our previous result for applied to K ′ implies
that if

K ′1 (x) :=

{
K ′ (x) if |x| > 1,

0 if |x| ≤ 1,

then we have ∣∣∣K̂ ′1 (ξ)
∣∣∣ ≤ C, for a.e. ξ ∈ Rn.

But now it is easy to check that we have

K̂ε (ξ) = K̂ ′1 (εξ) .

15



Hence we have proved that K̂ε ∈ L∞ (Rn) and we have∥∥∥K̂ε

∥∥∥
L∞(Rn)

≤ C,

where C is a constant independent of ε > 0. This completes the proof of (i).

Now we prove (ii). By (i), we have shown that for any f ∈ L2 (Rn) , the
sequence {Tεf}ε>0 is uniformly bounded in L2 (Rn) . Since L2 (Rn) is a Banach
space, to prove (ii), it is enough to prove that the sequence {Tεf}ε>0 is Cauchy.
To this end, assume 0 < δ < ε and fix η > 0. Since C∞c (Rn) is dense in L2 (Rn) ,
we can find g ∈ C∞c (Rn) such that we have

‖f − g‖L2(Rn) < η.

Now we have

‖Tεf − Tδf‖L2(Rn) ≤ ‖Tεg − Tδg‖L2(Rn) + ‖Tε (f − g)‖L2(Rn)

+ ‖Tδ (f − g)‖L2(Rn) .

By the uniform bound, this implies

‖Tεf − Tδf‖L2(Rn) ≤ ‖Tεg − Tδg‖L2(Rn) + 2A2 ‖f − g‖L2(Rn)

≤ ‖Tεg − Tδg‖L2(Rn) + 2A2η.

Now we claim that we have

lim
δ,ε→0

‖Tεg − Tδg‖L2(Rn) = 0

for any g ∈ C∞c (Rn) . The claim implies the result. Clearly, assuming the claim,
we would have

lim
δ,ε→0

‖Tεf − Tδf‖L2(Rn) ≤ 2A2η.

Since η > 0 is arbitrary, this means {Tεf}ε>0 is Cauchy in L2 (Rn) . Thus, it
only remains to show the claim. We have

Tεg (x)− Tδg (x) =

ˆ
|y|≥ε

K (y) g (x− y) dy −
ˆ
|y|≥δ

K (y) g (x− y) dy

= −
ˆ
δ<|y|<ε

K (y) g (x− y) dy

= −
ˆ
δ<|y|<ε

K (y) [g (x− y)− g (x)] dy, (9)

16



where we have used the cancellation property in the last line. Thus, we deduce

|Tεg (x)− Tδg (x)| ≤
ˆ
δ<|y|<ε

|K (y)| |g (x− y)− g (x)| dy

≤ C ‖∇g‖L∞(Rn)

ˆ
δ<|y|<ε

1

|y|n
|y| dy

≤ C
ˆ ε

δ

rn−1 1

rn−1
dr

≤ C
ˆ ε

0

dr ≤ Cε→ 0 as ε→ 0.

Thus, we have

‖Tεg − Tδg‖L∞(Rn) → 0 as ε, δ → 0.

But now observe that the expression in (9) makes it clear that Tεg − Tδg is
compactly supported, as g has compact support and y varies in the spherical
shell δ < |y| < ε.1 Since the support is compact and thus have finite measure,
we have

‖Tεg − Tδg‖L2(Rn) ≤ ‖Tεg − Tδg‖L∞(Rn) |supp (Tεg − Tδg)| → 0.

This completes the proof of the fact that {Tεf}ε>0 is Cauchy in L2 (Rn) . Thus,
{Tεf}ε>0 is convergent in L2 (Rn) and converges to some h ∈ L2 (Rn) . We now
set

Tf := h for all f ∈ L2 (Rn) ,

where h is the unique limit

Tεf → h strongly in L2 (Rn) .

Thus, we immediately deduce the estimate

‖Tf‖L2(Rn) = lim
ε→0
‖Tεf‖L2(Rn) ≤ A2 ‖f‖L2(Rn) .

This completes the proof.

2 Real analysis tools

2.1 Covering lemmas

We first start with a very simple, but still immensely useful result.

1Note that neither Tεg nor Tδg have compact support, but only their difference must be
compactly supported.
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Lemma 14 (Vitali covering lemma ( simplified version)). Suppose we have a
finite family of balls {Bri(xi)}i, then there exists a sub family of disjoint balls
{Brk(xk)}k such that ⋃

i

Bri(xi) ⊂
⋃
k

B3rk(xk)

Proof. First we arrange the balls in the descending order of their radii, i.e. the
largest ball ( or one of the largest ) as the first ball. We then add the first ball
to our subcollection. Now, if the second ball is disjoint from the first ball, we
add it to the subcollection. Then we select the ball with the largest radius ( or
one of them if there are are more than one with the same largest radius ) which
does not intersect the first ball as our second ball. Then we pick the ball the
ball with the largest radius ( or one of them if there are are more than one with
the same largest radius ) which does not intersect the either of the two balls we
have chosen as our third ball. We continue in this fashion. The process would
stop after finitely many steps, as we started with finitely many balls. Then all
the remaining balls intersect at least one of the balls in our collection. Now note
that if any two balls intersect and one of them has radius less than or equal to
the other, then the ball with the smaller or equal radius would be completely
contained inside the ball of radius three times that of the larger ( or equal )
radius. This engulfing property ensures the result.

2.2 Distribution function and weak Lp

We first introduce a tool to study the behavior of Lp functions. Roughly, if a
function is in Lp, then although the values of the function can be large, but the
measure of the set where this happens has to be correspondingly small enough.
Equivalently, the measure of its super level sets must decay in a certain manner
as the level rises. This is best expressed by the follong function.

Definition 15 (Distribution function). Let (Ω,F , µ) be measure space and f :
Ω → [0,∞] be a nonnegative measurable function. Given a nonnegative real
number t ≥ 0, we define the distribution function of f , αf : [0,∞)→ [0,∞] by

αf (t) := µ ({x ∈ Ω : |f(x)| > t})

Remark 16. When µ is the Lebesgue measure in Rn, we would just write

αf (t) := |{x ∈ Ω : |f(x)| > t}| .

We now state a formula commonly known as the Layer Cake formula. In
the same setting as above, we have,

Proposition 17. For all 1 ≤ p <∞,
ˆ

Ω

(f(x))
p
dµ = p

ˆ ∞
0

tp−1αf (t)dt
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Proof. Rewriting the LHS, we have

ˆ
Ω

(f(x))
p
dµ =

ˆ
Ω

p

ˆ f(x)

0

tp−1dt dµ

=

ˆ
Ω

ˆ ∞
0

ptp−1χ(x){f(x)>t}dt dµ

= p

ˆ ∞
0

tp−1αf (t)dt

This proves the result.

Proposition 18. Let Φ : [0,∞]→ [0,∞] be a C1, nondecreasing function such
that Φ (0) = 0. Then

ˆ
Rn

Φ (|f (x)|) dx =

ˆ ∞
0

Φ′ (t)αf (t) dt.

Proof is left as an exercise.

Theorem 19 (Chebyshev’s inequality). Let f ∈ Lp (Ω) for some 1 ≤ p < ∞
and Ω ⊂ Rn measurable. Then we have

αf (t) := |{x ∈ Ω : |f(x)| > t}| ≤ 1

tp
‖f‖pLp(Ω) .

Proof. We have that

s1{g(x)≥s} ≤ g(x)

Integrating this on Ω, we deduce

s |{x ∈ Ω : |f(x)| > s}| ≤
ˆ

Ω

g(x)dx.

With s = tp and g = |f |p, and noting that {x ∈ Ω : |f(x)|p > t} = {x ∈ Ω :
|f(x)|p > tp} we obtain the theorem.

A simple consequence of Chebyshev’s inequality is that if f ∈ Lp(Ω), then

sup
t>0

tp |{x ∈ Ω : |f | > t}| ≤ ‖f‖pLp(Ω) <∞.

The answer to the natural converse question is false as seen by the function
f(x) = 1/x on the interval [0, 1] with p = 1. However, the polynomial decay of
the distribution function is important enough to merit a definition.

Definition 20. (Weak Lp or Marcinkiewicz space) For 1 ≤ p <∞, we define

Lpw(Ω) :=

{
f : Ω→ R, f measurable : sup

t>0
tpαf (t) <∞

}

19



In general,

Lp(Ω) ( Lpw(Ω),

as the following example shows

f (x) :=
1

|x|
n
p
.

Since 1/ |x|n is not locally integrable around the origin ( check via polar coor-
dinates ) in Rn, clearly

f ∈ Lpw(Bn1 (0)), but f /∈ Lp(Bn1 (0)).

Remark 21. The space Lpw is the Lorentz space L(p,∞) and is often denoted
this way. The expression

‖f‖L(p,∞) := sup
t>0

tpαf (t)

does not define a norm, as the triangle inequality fails in general. However, as
we have

{x ∈ Ω : |f(x) + g(x)| > t} ⊂ {x ∈ Ω : |f(x)| > t/2} ∪ {x ∈ Ω : |g(x)| > t/2} ,

it is easy to that

‖f + g‖L(p,∞) ≤ 2 (‖f‖L(p,∞) + ‖g‖L(p,∞)) .

Thus, it is a quasinorm, not a norm. L(p,∞) is a quasi-Banach space under
this quasinorm. When p 6= 1, the quasinorm however is equivalent to a norm,
but this is not so for p = 1. A lot of harmonic analysis ( if not most, or all )
would be trivial if weak L1 would have been a normed space.

2.3 Maximal functions

Definition 22 (Hardy-Littlewood Maximal function). Let f ∈ L1
loc(Rn). De-

fine,

Mf(x) := sup
Qr(x)
r>0

1

|Qr(x)|

ˆ
Qr(x)

|f(y)|dy

where Qr(x) is a cube of side length r centered at x with sides parallel to the
axes.

This is the centered maximal function. One can also define the uncen-
tered one by only requiring x ∈ Q, not necessarily the center of Q. We can
also replace cubes with balls of radius r centered around x in the definition ( or
the uncentered ball version by using balls containing x ). For all these versions,
their general behavior, for our purposes, would not differ much at all. By the
Lebesgue Differentiation theorem, we have that Mf ≥ |f |. It is not difficult to
show that Mf is never in L1 (Rn) unless if f ≡ 0.
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Definition 23. The map

f 7→Mf

is called the maximal operator.

Theorem 24 (Hardy-Littlewood-Wiener maximal theorem). Let f ∈ L1
loc (Rn) .

(i) If f ∈ Lp (Rn) for some 1 ≤ p ≤ ∞, then Mf is finite for a.e. x ∈ Rn.

(ii) If f ∈ L∞ (Rn) , then Mf ∈ L∞ (Rn) and we have

‖Mf‖L∞(Rn) ≤ ‖f‖L∞(Rn) .

(iii) If f ∈ L1 (Rn), then Mf ∈ L1
w (Rn) and there exists a constant A > 0,

depending only on the dimension n, such that

sup
t>0

t |{x ∈ Rn : |Mf(x)| > t}| ≤ A‖f‖L1(Rn).

(iv) If f ∈ Lp (Rn) for 1 < p < ∞, then Mf ∈ Lp (Rn) and there exists a
constant Ap > 0, depending only on the dimension n and p, such that

‖Mf‖Lp(Rn) ≤ Ap‖f‖Lp(Rn).

Proof. (ii) is completely obvious. We prove (iii) and (iv) and leave (i) as an
exercise. We first prove (iii). Let t > 0 and let K be a compact set such that
K ⊂ {|Mf | > t}. Then for any x ∈ K, there exists r(x) > 0 such that,

ˆ
Qr(x)(x)

|f(y)|dy > t (r(x))
n
.

Now the collection of cubes ∪x∈KQr(x)(x) defines an open cover of K. By com-

pactness of K, there exists a finite subcover
{
Qrj (xj)

}
. Using Vitali’s Covering

lemma, we may obtain a finite disjoint subfamily {Qri(xi)}
m
i=1 such that

K ⊂
m⋃
i=1

Q3ri(xi)

Thus, we deduce

|K| ≤
m∑
i=1

(3ri(xi))
n

≤ 3n
m∑
i=1

(ri(xi))
n ≤ 3n

t

m∑
i=1

ˆ
Qri(xi)(xi)

|f(y)|dy ≤ 3n

t

ˆ
Rn
|f |.

21



Since this is true for every compact set sitting inside {|Mf | > t}, by inner
regularity of Lebesgue measure, we have

|{|Mf | > t}| ≤ 3n

t
‖f‖L1(Rn).

This proves (iii). For (iv), we define f1 = f.1{|f(x)|>t/2}. Then clearly, |f(x)| ≤
|f1(x)|+ t/2 and consequently Mf ≤Mf1 + t/2. Thus, we have

|{|Mf | > t}| ≤
∣∣∣∣{|Mf1| >

t

2

}∣∣∣∣ ≤ 2.3n

t

ˆ
Rn
|f1| ≤

2.3n

t

ˆ
{|f(x)|>t/2}

|f |

Now, using this in the layer cake formula and employing Fubini, we deduce
ˆ
Rn

(Mf)p = p

ˆ ∞
0

tp−1|{x ∈ Rn : Mf > t}| dt

≤ 2.3np

ˆ ∞
0

tp−1 1

t

ˆ
{|f(x)|>t/2}

|f | dx dt

≤ 2.3np

ˆ
Rn
|f(x)|

ˆ 2|f(x)|

0

tp−2 dt dx

≤ 3n2pp

p− 1
‖f‖pLp .

This completes the proof.

Remark 25. Note that that the constant blows up as p→ 1.

As a consequence, we can prove the Lebesgue differentiation theorem.

Corollary 26 (Lebesgue differentiation theorem). If f ∈ L1
loc(Rn), then

lim
r→0

1

|Br(x)|

ˆ
Br(x)

f(y)dy = f (x) for a.e. x ∈ Rn.

Proof. We may assume f ∈ L1(Rn). Define

Arf(x) =
1

|Br(x)|

ˆ
Br(x)

f(y)dy.

Suppose g ∈ Cc(Rn), we have that

lim
r→0

Arg(x) = g(x) for all x ∈ Rn.

We now have

Arf − f = Ar (f − g) +Arg − g + g − f.

Noting that lim supr→0 |Ar(f − g)| ≤M(f − g) we have,

lim sup
r→0

|Arf − f | ≤ |M(f − g)|+ |f − g|.

22



So we have for any ε > 0∣∣∣∣{lim sup
r→0

|Arf − f | > ε

}∣∣∣∣ ≤ ∣∣∣{|M(f − g)| > ε

2

}∣∣∣+
∣∣∣{|f − g| > ε

2

}∣∣∣
Now, we have by the weak (1, 1) estimate for the maximal function,∣∣∣{|M(f − g)| > ε

2

}∣∣∣ ≤ 2C

ε
‖f − g‖L1(Rn).

By Chebyshev’s inequality, we have∣∣∣{|f − g| > ε

2

}∣∣∣ ≤ 2

ε
‖f − g‖L1(Rn).

Thus, by the density of Cc(Rn) in L1(Rn), the RHS can be made arbitrarily
small. This completes the proof.

Remark 27. One can actually prove the stronger statement

lim
r→0

1

|Br(x)|

ˆ
Br(x)

|f(y)− f (x)| dy = 0 for a.e. x ∈ Rn.

We leave it as an exercise.

2.4 Marcinkiewicz interpolation theorem

We now want to prove an interpolation theorem. Before this, we need a few
notions.

Definition 28. Let Ω ⊂ Rn be open. For any 1 ≤ p < q ≤ ∞, the space
Lp (Ω) + Lq (Ω) is defined as the set of measurable functions f : Ω → R such
that there exists f1 ∈ Lp (Ω) and f2 ∈ Lq (Ω) and we can write

f = f1 + f2.

Remark 29. Note that such a decomposition of f is far from unique.

Obviously, by taking f1 = 0 or f2 = 0, it is easy to see that Lp (Ω) , Lq (Ω) ⊂
Lp (Ω) + Lq (Ω) . But even more is true.

Proposition 30. For every p ≤ r ≤ q, we have

Lr (Ω) ⊂ Lp (Ω) + Lq (Ω) .

Proof. For any γ > 0, we write

f = f1{|f |>γ} + f1{|f |≤γ} := f1 + f2.

Clearly,
ˆ

Ω

|f1|p ≤ γr−p
ˆ

Ω

|f |r .
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On the other hand, clearly f2 ∈ L∞ (Ω) by construction and if q 6=∞, we have

ˆ
Ω

|f2|q ≤ γq−r
ˆ

Ω

|f |r .

Definition 31. Let Ω1,Ω2 ⊂ Rn be two open subsets. Let M (Ω2) denote
the space of measurable functions over Ω2. We say that a map T : Lp (Ω1) +
Lq (Ω1)→M (Ω2) is Q-subadditive if there exists a constant Q > 0 such that

|T (f + g)| ≤ Q(|Tf |+ |Tg|) for all f, g ∈ Lp (Ω1) + Lq (Ω1) .

Remark 32. Note that T need not be linear, even if T is 1-subadditive. Every
linear map is of course 1-subadditive, but the maximal operator is 1-subadditive,
but not linear.

Definition 33. Let T : Lp (Ω1) +Lq (Ω1)→M (Ω2) be a Q-subadditive map.
T is said to be of weak type (p, p) if T maps Lp (Ω1) into Lpw (Ω2) and there
exists a constant C such that,

sup
t>0

tp |{x ∈ Ω2 : |Tf | > t}| ≤ C‖f‖pLp(Ω1) for all f ∈ Lp(Ω1).

We say T is of strong type (p, p) if T maps Lp(Ω1) into Lp(Ω2) and there
exists a constant C such that

‖Tf‖Lp(Ω2) ≤ C‖f‖Lp(Ω1) for all f ∈ Lp(Ω1).

We define weak type (∞,∞) to be the same as strong type (∞,∞).

Now we are in aposition to state the interpolation theorem.

Theorem 34 (Marcinkiewicz’s interpolation theorem). Let Ω1,Ω2 ⊂ Rn be two
open subsets. Let 1 ≤ p < q ≤ ∞. Let T : Lp (Ω1) + Lq (Ω1) → M (Ω2) be a
Q-subadditive map which is of weak type (p, p) and weak type (q, q). Then T is
of strong type (r, r) for every p < r < q.

Proof. First, we prove for 1 ≤ p < q <∞. Let f ∈ Lr(Ω1). For a s > 0, let

f1 = f1{|f |>s} f2 = f1{|f |≤s}

We have
f = f1 + f2

The idea will be to let this splitting of f vary by letting s vary. We have that

|Tf | ≤ Q(|Tf1|+ |Tf2|)

Let Ap and Aq be the constants of the weak type (p, p) and weak type (q, q)
inequalities respectively.
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We now have that

{|Tf | > t} ⊂
{
|Tf1| >

t

2Q

}
∪
{
|Tf2| >

t

2Q

}
So we have

αTf (t) ≤ αTf1

(
t

2Q

)
+ αTf2

(
t

2Q

)
≤ Ap

(t/2Q)p

ˆ
Ω1

|f1|p +
Aq

(t/2Q)q

ˆ
Ω1

|f2|q.

Now we have,ˆ
Ω2

|Tf(x)|rdx = r

ˆ ∞
0

tr−1αTf (t)dt

≤ r
ˆ ∞

0

tr−1

{
Ap

(t/2Q)p

ˆ
Ω1

|f1|p +
Aq

(t/2Q)q

ˆ
Ω1

|f2|q
}
dt

= Ap2
pQpr

ˆ ∞
0

(ˆ
|f |>s

|f1|p
)
tr−1−pdt

+Aq2
qQqr

ˆ ∞
0

(ˆ
|f |≤s

|f2|q
)
tr−1−qdt

Now, the choice of s was arbitrary. In particular, we may let it vary. Setting
s = t, we getˆ

Ω2

|Tf(x)|rdx

≤ Ap2pQpr
ˆ ∞

0

(ˆ
|f |>t

|f1|p
)
tr−1−pdt

+Aq2
qQqr

ˆ ∞
0

(ˆ
|f |≤t

|f2|q
)
tr−1−qdt

≤ Ap2pQpr
ˆ ∞

0

(ˆ
|f |>t

|f |p
)
tr−1−pdt

+Aq2
qQqr

ˆ ∞
0

(ˆ
|f |≤t

|f |q
)
tr−1−qdt

= Ap2
pQpr

ˆ
Ω1

|f |pdx
ˆ |f |

0

tr−1−pdt

+Aq2
qQqr

ˆ
Ω1

|f |dx
ˆ ∞
|f |

tr−1−qdt

=

{
Ap2

pQpr
1

r − p
+Aq2

qQqr
1

q − r

}ˆ
Ω1

|f |r.
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This proves the desired inequality. When q = ∞, Take any f ∈ Lr(Ω1) for
r ∈ (p,∞). As before define f1 and f2

f1 = f1{|f |>s} f2 = f1{|f |≤s}.

We have that f2 ∈ L∞(Ω1) and f1 ∈ Lp(Ω1). Let Ap and A∞ be the constants
of the weak (p, p) and weak (∞,∞) inequalities respectively. So we have,

|Tf | ≤ Q(|Tf1|+ |Tf2|
≤ Q|Tf1|+QA∞‖f2‖L∞(Ω1)

≤ Q|Tf1|+QA∞s

Now we pick s such that QA∞s = t
2 . So we have

|Tf | ≤ Q|Tf1|+
t

2

This gives us,

{|Tf | > t} ⊂
{
|Tf1| >

t

2Q

}
.

Thus, we deduce

|{x ∈ Ω2 : |Tf | > t}) ≤
∣∣∣∣{x ∈ Ω2 : |Tf1| >

t

2Q

}∣∣∣∣
≤ Ap

(t/2Q)p
‖f1‖Lp(Ω1)

So we have,

ˆ
Ω2

|Tf(x)|rdx = r

ˆ ∞
0

tr−1αTf (t)dt

≤ r
ˆ ∞

0

tr−1Ap2
pQp

tp

ˆ
|f |> t

2QA∞

|f |pdtdx

≤ Ap2pQpr
ˆ

Ω1

|f |pdx
ˆ 2QA∞|f |

0

tr−1−pdt

≤ Ap2pQpr
(2QA∞)r−p

r − p

ˆ
Ω1

|f |r

which proves the required inequality.

Remark 35. Note that the Marcinkiewicz interpolation theorem can be used to
prove part (iv) of the Hardy-Littlewood-Wiener maximal theorem from part (ii)
and (iii). Indeed, the maximal operator is 1-subadditive and by (iii), is of weak
type (1, 1) and of strong type (∞,∞) by (ii). Hence, maximal operator is of
strong (p, p) for every 1 < p <∞, by the Marcinkiewicz interpolation theorem.
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2.5 Calderon-Zygmund decomposition

We have already seen one way of splitting a function f. Now we want to split
a functio in two parts, with more refined control over the pieces. A basic tool
for this is the following decomposition, known as the Calderon-Zygmund
decomposition. This simple device is an extremely robust, flexible and potent
tool.

Theorem 36 (CZ decomposition in a cube). Let Q ⊂ Rn be an open cube and
let f ∈ L1(Q). Let α > 0 be a real number such that

1

|Q|

ˆ
Q

|f | ≤ α.

Then there exists a countable family of open subcubes {Qi}∞i=1, with sides parallel
to the original cube Q and with pairwise mutually disjoint interiors such that

(a) For every i, we have

α <
1

|Qi|

ˆ
Qi

|f | ≤ 2nα,

(b) and we have

|f | ≤ α for a.e. x on Q\
∞⋃
i=1

Qi.

Proof. If |f | ≤ α a.e. on Q, then we are done. If not, bisect each side of Q to
obtain 2n congruent subcubes. In each of those subcubes Q′, exactly one of the
two possibilities can occur.

• Case 1:  
Q′
|f | ≤ α.

• Case 2:  
Q′
|f | > α.

Add those subcubes where the second case occurs to our subcollection {Qi}.
Where Case 1 occurs, we again bisect the sides of those subcubes and continue
the process. Clearly, the process can go on only countably many times and we
end up with a countable collection of subcubes {Qi}i∈N . Now, for any of these

subcubes, note that their immediate ‘parent’ cube ( denoted by Q̃i ) was not
selected, otherwise we would not even bisect the sides of Q̃i. Hence we have

α <
1

|Qi|

ˆ
Qi

|f | ≤ 1

|Qi|

ˆ
Q̃i

|f | ≤ 2n

|Q̃i|

ˆ
Q̃i

|f | ≤ 2nα.

Now for any point in the complement of this collection is contained in a sequence
of cubes where Case 1 occured. Thus, we have a sequence of cubes of shrinking
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side length {Ci (x)}i∈N such that x ∈ Ci (x) for each i ∈ N. Thus, by the
Lebesgue Differentiation theorem ( uncentered version ), we deduce,

f(x) = lim
diamCi(x)→0

1

|Ci (x) |

ˆ
Ci(x)

|f | ≤ α.

This completes the proof.

As a simple corollary, we have the Calderon-Zygmund decomposition on all
of Rn for any α > 0.

Theorem 37 (CZ decomposition in Rn). Let f ∈ L1(Rn). Let α > 0 be a real
number. Then there exists a countable family of open cubes {Qi}∞i=1, with sides
parallel to the coordinate axes and with pairwise mutually disjoint interiors such
that

(a) For every i, we have

α <
1

|Qi|

ˆ
Qi

|f | ≤ 2nα,

(b) and we have

|f | ≤ α for a.e. x on Q\
∞⋃
i=1

Qi.

Proof. Divide Rn into countable number of congruent cubes with sides parallel
to the coordinate axes with side length L. Since f ∈ L1(Rn), choose L > 0 large
enough such that

αLn ≥ ‖f‖L1(Rn) .

Now we apply the CZ decomposition to each of these cubes.

Remark 38. We often say CZ decomposition of f at level α.

As a consequence, we can split a function into two parts.

Theorem 39 (CZ decomposition of functions in Rn). Let f ∈ L1(Rn). Let
α > 0 be a real number. Then there exist a bounded function g and a countable
family of L1 functions {bi}i∈N and a countable collection of open cubes {Qi}∞i=1,
with sides parallel to the coordinate axes and with pairwise mutually disjoint
interiors such that

(i) We have

f = g + b := g +

∞∑
i=1

bi.

(ii) f = g for a.e. x ∈ G, where G := Rn \
∞⋃
i=1

Qi.
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(iii) We have the estimates

‖g‖L∞(Rn) ≤ 2nα and ‖g‖L1(Rn) ≤ ‖f‖L1(Rn) .

(iv) For every i, we have bi ≡ 0 outside Qi and we have
 
Qi

bi (y) dy = 0.

(v) We have

∞∑
i=1

‖bi‖L1(Rn) ≤ 2 ‖f‖L1(Rn) .

(vi) For the set F :=
∞⋃
i=1

Qi, we have

|F| ≤ 1

α
‖f‖L1(Rn) .

Remark 40. The notation g and b stands for the ‘good part’ and ‘bad part’ of
the function f respectively and the notation G denotes the ‘good set’ and F is
called the ‘bad set’.

Proof. Apply the Calderon-Zygmund decomposition to f at level α > 0 to
obtain a countable collection of cubes {Qi}∞i=1 and define

g (x) :=


f (x) in Rn \

∞⋃
i=1

Qi,

 
Qi

f (y) dy in Qi.

Set b = f−g and bi = b1Qi for each i ∈ N. Verification of the claimed properties
is left as an easy exercise.

3 Singular integrals

3.1 Weak (1, 1) estimate

We are now ready to prove our main estimate, which is the key step towards
the Calderon-Zygmund theorem we are planning to prove.

Theorem 41. Let K be CZ kernel satisfying the Hörmander condition. Let
f ∈ L1 (Rn) . For any ε > 0, define the operators

Tεf (x) =

ˆ
Rn\Bε(x)

K (x− y) f (y) dy for a.e. x ∈ Rn.
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Then for every ε > 0, Tεf ∈ L1
w (Rn) and there exists a constant A1 > 0,

independent of f and ε > 0, such that we have the estimates

|{x ∈ Rn : |Tεf (x)| > t}| ≤ A1

t
‖f‖L1(Rn) for all t > 0.

Proof. Fix t > 0. Apply the CZ decomposition to f at level t to obtain a bounded
function g and a countable family of L1 functions {bi}i∈N and a countable col-
lection of open cubes {Qi}∞i=1, with sides parallel to the coordinate axes and
with pairwise mutually disjoint interiors, as in Theorem 39. Thus, we have

Tεf = Tεg + Tεb := Tεg +

∞∑
i=1

Tεbi.

Thus, we deduce

{x : |Tεf (x)| > t} ⊂ {x : |Tεg (x)| > t/2} ∪ {x : |Tεb (x)| > t/2} .

This implies

|{x ∈ Rn : |Tεf (x)| > t}| ≤ |{x ∈ Rn : |Tεg (x)| > t/2}|
+ |{x ∈ Rn : |Tεb (x)| > t/2}| . (10)

Note that g ∈ L2 (Rn) and we have the estimate

‖g‖2L2(Rn) ≤ ‖g‖L∞(Rn) ‖g‖L1(Rn) ≤ 2nt ‖g‖L1(Rn) ≤ 2nt ‖f‖L1(Rn) .

Combining this with Chebyshev’s inequality and Theorem 13, we have

|{x ∈ Rn : |Tεg (x)| > t/2}| ≤ 4

t2
‖Tεg‖2L2(Rn)

≤ 4A2

t2
‖g‖2L2(Rn) ≤

2n+2A2

t
‖f‖L1(Rn) . (11)

Now for each i ∈ N, let Q∗i denote that cube with the same center and parallel
sides as Qi, but with side length 2

√
nli, where li is the side length of the cube

Qi. We set

F∗ :=
∞⋃
i=1

Q∗i and G∗ = Rn \ F∗.

Clearly, we have

{x ∈ Rn : |Tεb (x)| > t/2}
⊂ {x ∈ G∗ : |Tεb (x)| > t/2} ∪ {x ∈ F∗ : |Tεb (x)| > t/2} .

Thus, we deduce

|{x ∈ Rn : |Tεb (x)| > t/2}| ≤ |{x ∈ G∗ : |Tεb (x)| > t/2}|
+ |{x ∈ F∗ : |Tεb (x)| > t/2}| . (12)
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But we have

|{x ∈ F∗ : |Tεb (x)| > t/2}| ≤ |F∗|

≤
∞∑
i=1

|Q∗i |

=
(
2
√
n
)n ∞∑

i=1

|Qi|

=
(
2
√
n
)n |F| ≤ (2

√
n)
n

t
‖f‖L1(Rn) . (13)

Now we estimate |{x ∈ G∗ : |Tεb (x)| > t/2}| . Note that since
ffl
Qi
bi = 0 for each

i ∈ N, we can write

Tεbi (x) =

ˆ
Qi

Kε (x− y) bi (y) dy =

ˆ
Qi

[Kε (x− y)−Kε (x− yi)] bi (y) dy,

where yi denotes the center of the cube Qi. Hence we have

Tεb (x) =

∞∑
i=1

ˆ
Qi

[Kε (x− y)−Kε (x− yi)] bi (y) dy.

Using this and Fubini, we deduce

ˆ
G∗
|Tεb (x)| dx ≤

∞∑
i=1

ˆ
x/∈Q∗i

(ˆ
Qi

|Kε (x− y)−Kε (x− yi)| |bi (y)| dy

)
dx

=

∞∑
i=1

ˆ
Qi

|bi (y)|

(ˆ
x/∈Q∗i

|Kε (x− y)−Kε (x− yi)| dx

)
dy,

(14)

as long as we can show that the integral on the right is finite. Now observe that
since yi is the center of the cube Qi with side length li, we have

|y − yi| ≤
√
n

2
li.

On the other hand, since Q∗i has side length 2
√
nli and center yi, for any x /∈ Q∗i ,

we have

|x− yi| >
2
√
n

2
li ≥ 2 |y − yi| .

Thus, setting x′ = x − yi and y′ = y − yi and changing variables, the integral
inside the parentheses can be written as
ˆ
x/∈Q∗i

|Kε (x− y)−Kε (x− yi)| dx =

ˆ
|x′|>2|y′|

|Kε (x′ − y′)−Kε (x′)| dx′.
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Since this is bounded uniformly w.r.t y′ by the Hörmander condition, we finally
arrive at

ˆ
G∗
|Tεb (x)| dx ≤

∞∑
i=1

ˆ
Qi

|bi (y)|

(ˆ
x/∈Q∗i

|Kε (x− y)−Kε (x− yi)| dx

)
dy

≤ C
∞∑
i=1

ˆ
Qi

|bi (y)| dy = C

∞∑
i=1

‖bi‖L1(Rn) ≤ 2C ‖f‖L1(Rn) .

Hence, by Chebyshev’s inequality, we deduce

|{x ∈ G∗ : |Tεb (x)| > t/2}| ≤ 2

t

ˆ
G∗
|Tεb (x)| dx ≤ 4C

t
‖f‖L1(Rn) . (15)

Finally, in view of (10) and (12), combining (11), (13) and (15), we have

|{x ∈ Rn : |Tεf (x)| > t}| ≤ A1

t
‖f‖L1(Rn) ,

where

A1 := 2n+2A2 + 2nn
n
2 + 4C,

where C is the constant in the Hörmander condition. This completes the proof.

3.2 Calderon-Zygmund theorem

Now we prove our main result, often called the Calderon-Zygmund theorem or
the Calderon-Zygmund inequality.

Theorem 42. Let K be CZ kernel satisfying the Hörmander condition. Let
1 < p <∞ and let f ∈ Lp (Rn) . For any ε > 0, define the operators

Tεf (x) =

ˆ
Rn\Bε(x)

K (x− y) f (y) dy for a.e. x ∈ Rn.

Then we have

(i) For every ε > 0, Tεf ∈ Lp (Rn) and there exists a constant Ap > 0,
independent of f and ε > 0, such that we have the estimates

‖Tεf‖Lp(Rn) ≤ Ap ‖f‖Lp(Rn) .

(ii) Tεf converges to a limit, denoted by Tf in Lp (Rn) as ε → 0 and the
map f 7→ Tf defines a bounded linear operator from Lp (Rn) to itself and
satisfies

‖Tf‖Lp(Rn) ≤ Ap ‖f‖Lp(Rn) .
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Remark 43. As the proof will reveal, we also have Ap = Ap′ .

Proof. We first prove (i). The operators Tε are of strong type (2, 2), by Theorem
13 and also of weak type (1, 1), by Theorem 41, uniformly w.r.t. ε > 0. Thus,
by the Marcinkiewicz interpolation theorem, The operators Tε are also of strong
type (p, p) for any 1 < p ≤ 2, again uniformly w.r.t. ε > 0. This proves (i) if
1 < p ≤ 2.

If 2 < p <∞, we proceed via a duality argument. Define the kernel

K̃ (x) := K (−x) for all x ∈ Rn \ {0} .

Define the operators

T̃εf (x) =

ˆ
Rn\Bε(x)

K̃ (x− y) f (y) dy for a.e. x ∈ Rn.

Note that K̃ is a CZ kernel and satisfies the Hörmander condition with the
same constants as K. Now since 2 < p < ∞, we have 1 < p′ < 2. Thus, by the
arguments above, the operators T̃ε are of strong type (p′, p′), uniformly w.r.t.
ε > 0. More precisely, we have the estimates∥∥∥T̃εφ∥∥∥

Lp′ (Rn)
≤ Ap′ ‖φ‖Lp′ (Rn) ,

for all ε > 0 and any φ ∈ Lp′ (Rn) . Note that the constant Ap′ for T̃ε is the
same for Tε. Now for any f, φ ∈ C∞c (Rn) , we have

ˆ
Rn
Tεf (x)φ (x) dx =

ˆ
Rn

[ˆ
Rn\Bε(x)

K (x− y) f (y) dy

]
φ (x) dx

Fubini
=

ˆ
Rn
f (y)

[ˆ
Rn\Bε(y)

K (x− y)φ (x) dx

]
dy

=

ˆ
Rn
f (y)

[ˆ
Rn\Bε(y)

K̃ (y − x)φ (x) dx

]
dy

=

ˆ
Rn
f (y) T̃εφ (y) dy.

By the dual characterization of Lp norms and the density of C∞c (Rn) , we deduce

‖Tεf‖Lp(Rn) = sup
φ∈C∞c (Rn),
‖φ‖

Lp
′
(Rn)
≤1

∣∣∣∣ˆ
Rn
Tεf (x)φ (x) dx

∣∣∣∣
= sup

φ∈C∞c (Rn),
‖φ‖

Lp
′
(Rn)
≤1

∣∣∣∣ˆ
Rn
f (y) T̃εφ (y) dy

∣∣∣∣
Hölder
≤ sup

φ∈C∞c (Rn),
‖φ‖

Lp
′
(Rn)
≤1

‖f‖Lp(Rn)

∥∥∥T̃εφ∥∥∥
Lp′ (Rn)

≤ Ap′ ‖f‖Lp(Rn) ,
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for any f ∈ C∞c (Rn) . By density of C∞c (Rn) in Lp (Rn) , this estimate holds
for any f ∈ Lp (Rn) . This completes the proof of (i).

The proof of (ii) can now be derived from the uniform bound in (i) by
arguing exactly as was done in the proof of (ii) of Theorem 13.

3.3 Lp estimate for Newtonian potential

Now we are almost ready to use the Calderon-Zygmund theorem to prove Lp

estimates for the Newton’s potential. First we need a notation.

Notation 44. For any 1 ≤ p ≤ ∞, we define the space

Lpc (Rn) := {f ∈ Lp (Rn) : supp f is a compact set in Rn} .

Theorem 45. Let f ∈ Lpc (Rn) for some 1 < p < ∞. Then there exists a
w ∈W 2,p

loc (Rn) with ∇2w ∈ Lp (Rn) and satisfies

−∆w = f in Rn,

in the sense of distributions and there exists a constant Cp = Cp (p, n) > 0 such
that we have the estimate∥∥∇2w

∥∥
Lp(Rn)

≤ Cp ‖f‖Lp(Rn) .

Remark 46. As the proof will show, if f ∈ C∞c (Rn) , and Nf denotes the
Newtonian potential of f , defined by

Nf := N ∗ f,

then

w ≡ Nf in Rn.

For this reason, we would just call w as the Newtonian potential of f , when
f ∈ Lp (Rn) and would henceforth denote w simply by the notation Nf or
N ∗ f. Note that as the Newtonian kernel and its first derivative is only locally
integrable, but not in L1 (Rn) , Nf is in general, never in W 2,p (Rn) . Thus, there
is no easy way to make sense of the convolution N ∗f directly when f ∈ Lp (Rn) .

Proof. First assume f ∈ C∞c (Rn) and set C = supp f. Then Nf is well defined
and is in fact a smooth function and satisfies the PDE in the pointwise sense.
Clearly, the map

f 7→ ∇2Nf

is a CZ operator which satisfies the Hörmander condition. Hence, by the
Calderon-Zygmund inequality, we have∥∥∇2Nf

∥∥
Lp(Rn)

≤ Cp ‖f‖Lp(Rn) .
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Now let K ⊂ Rn be any compact subset. We plan to estimate

‖Nf‖Lp(K) and ‖∇Nf‖Lp(K) .

Now let φ ∈ C∞c (Rn) such that φ ≡ 1 in an open neighborhood of the compact
subset K − C, defined as

K − C := {x− y : x ∈ K, y ∈ C} .

Now, for any x ∈ K, we have

Nf (x) =

ˆ
Rn
N (x− y) f (y) dy

=

ˆ
Rn

(φN ) (x− y) f (y) dy = [φN ∗ f ] (x) .

Now, it is easy to show that N is locally integrable around the origin in Rn.
Since N is a smooth function away from the origin anyway, we deduce that
N ∈ L1

loc (Rn) . Since φ ∈ C∞c (Rn) , we have φN ∈ L1 (Rn) . Thus, by the
Young’s inequality for convolutions, we deduce

‖Nf‖Lp(K) = ‖φN ∗ f‖Lp(K) ≤ ‖φN ∗ f‖Lp(Rn) ≤ ‖φN‖L1(Rn) ‖f‖Lp(Rn) .

Exactly similar arguments prove

‖∇Nf‖Lp(K) = ‖φ∇N ∗ f‖Lp(K) ≤ ‖φ∇N ∗ f‖Lp(Rn)

≤ ‖φ∇N‖L1(Rn) ‖f‖Lp(Rn) .

Note that the numbers

‖φN‖L1(Rn) and ‖φ∇N‖L1(Rn)

depend on the compact sets K and C and the dimension n. Thus, we can write
the estimates

‖Nf‖Lp(K) + ‖∇Nf‖Lp(K) ≤ C (n,K, C) ‖f‖Lp(Rn) .

This proves our result when f ∈ C∞c (Rn) .

For the general case, let f ∈ Lpc (Rn) and let C = supp f. By approximation,
we can find a sequence {fs}s∈N ⊂ C∞c (Rn) such that

fs → f strongly in Lp (Rn)

and

supp fs ⊂ C for every s ∈ N.

Thus, by our arguments in the previous case, we have∥∥∇2Nfs1 −∇2Nfs2
∥∥
Lp(Rn)

=
∥∥∇2N (fs1 − fs2)

∥∥
Lp(Rn)

≤ Cp ‖fs1 − fs2‖Lp(Rn) → 0 as s1, s2 →∞.

35



Also, for any compact set K, we have

‖Nfs1 −Nfs2‖Lp(K) + ‖∇Nfs1 −∇Nfs2‖Lp(K)

≤ C (n,K, C) ‖fs1 − fs2‖Lp(Rn) → 0 as s1, s2 →∞.

This shows that for any compact set K, the sequence of smooth functions
{Nfs} ⊂ C∞ (Rn) , restricted to K, defines a Cauchy sequence is W 2,p (K)
and thus converges in W 2,p (K) to a limit, which we denote by hK . By the
strong convergence in Lp (K) , we also have

Nfs (x) is convergent for a.e. x ∈ K.

Since K is arbitrary, we have

Nfs (x) is convergent for a.e. x ∈ Rn.

Set

w (x) = lim
s→∞

Nfs (x) for a.e. x ∈ Rn.

It is now easy to check that w must agree a.e. with hK in K. Again, since
K ⊂ Rn is an arbitary compact subset, we have w ∈ W 2,p

loc (Rn) . Moreover, we
have the estimates∥∥∇2w

∥∥
Lp(Rn)

≤ lim inf
s→∞

∥∥∇2Nfs
∥∥
Lp(Rn)

≤ Cp lim inf
s→∞

‖fs‖Lp(Rn) = Cp ‖f‖Lp(Rn) .

To see that w satisfies the PDE in the sense of distributions, pick φ ∈ C∞c (Rn)
and set K := suppφ. Since

Nfs → w strongly in Lp (K) ,

we deduce

−
ˆ
Rn
w∆φ = −

ˆ
K

w∆φ

= − lim
s→∞

ˆ
K

Nfs∆φ

= − lim
s→∞

ˆ
Rn
Nfs∆φ

= − lim
s→∞

ˆ
Rn
φ∆Nfs = lim

s→∞

ˆ
Rn
φfs =

ˆ
Rn
φf.

This completes the proof.
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4 Lp estimates for elliptic equations via singular
integrals

4.1 Interior Lp estimates for the Laplacian

Now we can prove the interior W 2,p estimates for the Laplacian.

Theorem 47. Let n ≥ 3 and Ω ⊂ Rn be a bounded open set. Let f ∈ Lp (Ω)
for some 1 < p <∞ and let u ∈ Lp (Ω) satisfy

−∆u = f in Ω,

in the sense of distributions. Then u ∈ W 2,p
loc (Ω) and for any Ω1 ⊂⊂ Ω, there

exists a constant C = C (n, p,Ω,Ω1) > 0 such that we have the estimate

‖u‖W 2,p(Ω1) ≤ C
(
‖u‖Lp(Ω) + ‖f‖Lp(Ω)

)
.

Proof. Define

f̃ :=

{
f in Ω,

0 in Rn \ Ω.

Then clearly, f̃ ∈ Lpc (Rn) . Let w = Nf̃, i.e. the function w given by Theorem
45. Set v := u− w. Then clearly

−∆v = 0 in Ω,

in the sense of distributions. By Weyl’s lemma ( see Theorem 4.7, Page 118 in
[1] ), the distribution ( actually an Lp function here ) v is a smooth harmonic
function in Ω. Now, the standard derivative estimate for harmonic functions (
see Theorem 7, page 29 of [2] ) implies that we have

sup
x∈Ω1

|v| , sup
x∈Ω1

|∇v| , sup
x∈Ω1

∣∣∇2v
∣∣ ≤ C (Ω,Ω1, n) ‖v‖L1(Ω) .

Hence we deduce

‖v‖W 2,p(Ω1) ≤ C (Ω,Ω1, n, p) ‖v‖L1(Ω)

Hölder
≤ C (Ω,Ω1, n, p) ‖v‖Lp(Ω) .

Hence, we have

‖u‖W 2,p(Ω1) ≤ ‖v‖W 2,p(Ω1) + ‖w‖W 2,p(Ω1)

≤ C (Ω,Ω1, n, p) ‖v‖Lp(Ω) + C (Ω,Ω1, n, p)
∥∥∥f̃∥∥∥

Lp(Rn)
.

But we also have

‖v‖Lp(Ω) = ‖u− w‖Lp(Ω)

≤ ‖u‖Lp(Ω) + ‖w‖Lp(Ω)

≤ ‖u‖Lp(Ω) + C (Ω, n, p)
∥∥∥f̃∥∥∥

Lp(Rn)
.
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Thus, we arrive at

‖u‖W 2,p(Ω1) ≤ C (Ω,Ω1, n, p)

(
‖u‖Lp(Ω) +

∥∥∥f̃∥∥∥
Lp(Rn)

)
= C (Ω,Ω1, n, p)

(
‖u‖Lp(Ω) + ‖f‖Lp(Ω)

)
.

This completes the proof.

Note that if g ∈ Lpc (Rn) , then for any 1 ≤ i, j ≤ n, we have

∂

∂xj

[
N ∗

(
∂g

∂xi

)]
' ∂2N
∂xi∂xj

∗ g.

Hence, for any F ∈ Lpc (Rn;Rn) , each component of the map

F 7→ ∇2NF ' ∇N (divF )

is also a CZ operator satisfying the Hörmander conditions. Thus, exactly the
same arguments as above proves the following result about gradient Lp esti-
mates.

Theorem 48. Let n ≥ 3 and Ω ⊂ Rn be a bounded open set. Let F ∈ Lp (Ω;Rn)
for some 1 < p <∞ and let u ∈ Lp (Ω) satisfy

−∆u = divF in Ω,

in the sense of distributions. Then u ∈ W 1,p
loc (Ω) and for any Ω1 ⊂⊂ Ω, there

exists a constant C = C (n, p,Ω,Ω1) > 0 such that we have the estimate

‖u‖W 1,p(Ω1) ≤ C
(
‖u‖Lp(Ω) + ‖F‖Lp(Ω;Rn)

)
.

If 1 < p < n, similar arguments coupled with Sobolev embedding proves the
following.

Theorem 49. Let n ≥ 3 and Ω ⊂ Rn be a bounded open set. Let f ∈ L
np
n+p (Ω)

and F ∈ Lp (Ω;Rn) for some 1 < p < n. Let u ∈ Lp (Ω) satisfy

−∆u = f + divF in Ω,

in the sense of distributions. Then u ∈ W 1,p
loc (Ω) and for any Ω1 ⊂⊂ Ω, there

exists a constant C = C (n, p,Ω,Ω1) > 0 such that we have the estimate

‖u‖W 1,p(Ω1) ≤ C
(
‖u‖Lp(Ω) + ‖f‖

L
np
n+p (Ω)

+ ‖F‖Lp(Ω;Rn)

)
.

Remark 50. Note that if we are trying to solve the Dirichlet boundary value
problem {

−∆u = f in Ω,

u = 0 on ∂Ω,
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with F ∈ Lp (Ω;Rn) and obtain interior Lpestimates for a solution, the exis-
tence of solutions is not assured if 1 < p < 2, as the Newtonian potential
solution would not satisfy the boundary condition. For p ≥ 2, one can use stan-
dard variational methods ( or Lax-Milgram argument ) to obtain existence of a
solution in W 1,2 (Ω) and argue by bootstrapping. For 1 < p < 2, even existence
of a solution to the homogeneous Dirichlet BVP requires global estimates and
uniqueness arguments coupled with an approximation procedure to estab-
lish the existence of solutions. We leave it to the interested reader to carefully
work out the argument in detail.

4.2 Interior Lp estimates for constant coefficients

Consider the equation

−div (A∇u) = f in Ω,

where Ω ⊂ Rn is a bounded open set, A ∈ Symmn×n is a symmetric n × n
matrix which is uniformly elliptic, i.e. there exists a constant λ > 0 such that

〈Aξ, ξ〉 ≥ λ |ξ|2 for every ξ ∈ Rn.

We are interested in deriving the interior W 2,p estimates. There is a simple
trick to reduce this question to the interior W 2,p estimate for the Laplacian,
which we now describe.

Since A is symmetric and uniformly elliptic, all its eigenvalues are positive
and A is diagonalizable. Thus, there exists a matrix P ∈ SO (n) and a diagonal
matrix

D = diag (λ1, . . . , λn) ,

where λ1, . . . , λn are the eigenvalues of the matrix A such that

A = P ᵀAP.

Denote
√
D := diag

(√
λ1, . . . ,

√
λn

)
.

Now we set

Ω̃ :=
{
x ∈ Rn :

√
DPx ∈ Ω

}
and

v (x) := u
(√

DPx
)

for all x ∈ Ω̃.

Since the map x 7→
√
DPx defines a smooth affine diffeomorphism of Rn to

itself, Ω̃ is also open and bounded. Now it is easy to verify by direct calculation
that we have

−∆v (x) = −div (A∇u)
(√

DPx
)

for all x ∈ Ω̃,

if u ∈ C2 (Ω) . But these also holds in the weak sense for W 2,p functions and
thus, proving W 2,p estimate for u is reduced to proving W 2,p estimate for v.
Analogous considerations hold for W 1,p estimates as well.
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4.3 Interior Lp estimates for Lipschitz coefficients

Now we consider the equation

−div (A (x)∇u) = divF in Ω,

where Ω ⊂ Rn is a bounded open set, A ∈ Lip
(
Ω; Symmn×n

)
is a symmetric

n× n matrix field which is uniformly elliptic, i.e. there exists a constant λ > 0
such that

〈A (x) ξ, ξ〉 ≥ λ |ξ|2 for every ξ ∈ Rn and every x ∈ Ω.

We are interested in deriving the interior W 1,p estimates. For the result, the
assumption of Lipschitz continuity for the coefficient is not sharp. But this
makes our life quite a bit simpler, so we would prove this under this assumption.
The plan is to use the Korn’s freezing trick and write

−div (A (x0)∇u) = div ([A (x)−A (x0)]∇u) + divF in Ω,

for some x0 ∈ Ω. Now for any radius R > 0 such that B2R (x0) ⊂⊂ Ω, assuming
u ∈W 1,p (B2R (x0)) , we would have the estimate

‖u‖W 1,p(BR(x0))

≤ C
(
‖u‖Lp(Ω) + ‖F‖Lp(Ω;Rn) + + ‖[A (x)−A (x0)]∇u‖Lp(B2R(x0);Rn)

)
≤ C

(
‖u‖Lp(Ω) + ‖F‖Lp(Ω;Rn) + 2RLip (A) ‖∇u‖Lp(B2R(x0);Rn)

)
.

We plan to absorb the last term on the RHS in the LHS by choosing R > 0 small
enough. Unfortunately, there are two issues with this approach. The first is that
we do not know u ∈ W 1,p (B2R (x0)) to begin with and the second, somewhat
more serious issue is that the last term on the right has Lp norm of ∇u on a ball
of radius 2R, whereas on the left we have the W 1,p norm of u on a ball of radius
R, i.e. the norms are on the different sets. We would address both these
difficulties by a localization, approximation and a covering argument.

Localization: Fix some Ω1 ⊂⊂ Ω. Choose Ω2 such that we have

Ω1 ⊂⊂ Ω2 ⊂⊂ Ω.

Now choose η ∈ C∞c (Ω2) such that η ≡ 1 on Ω1. Set

v := ηu in Rn.

Approximation: Now choose a standard mollifying kernel ψ ∈ C∞c (B1 (0))
and for δ > 0, set

vδ := v ∗ ψδ,
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where

ψδ (x) :=
1

δn
ψ
(x
δ

)
for all x ∈ Rn.

Since supp v ⊂ Ω2 ⊂⊂ Ω, there exists δ0 > 0 small enough such that supp vδ ⊂⊂
Ωδ0 for all 0 < δ < δ0, where

Ωδ0 := {x ∈ Ω : dist (x, ∂Ω) > δ0} .

We plan to derive the equation satisfied by vδ. By a straight forward calculation,
we have

−div (A (x)∇vδ) = H (u, η, δ) in Ωδ0 ,

where

H (u, η, δ) := G (u, η) ∗ ψδ − div [A (x) (∇v ∗ ψδ)− (A (x)∇v) ∗ ψδ]

and

G (u, η) := η divF − 〈∇η,A (x) (∇u)〉 − div (uA (x) (∇η))

= −〈∇η, F +A (x) (∇u)〉 − div (ηF + uA (x) (∇η))

:= −G1 (u, η)− divG2 (u, η) .

Now we first claim if u ∈W 1, npn+p (Ω) , then

H3 := A (x) (∇v ∗ ψδ)− (A (x)∇v) ∗ ψδ ∈ Lpc (Rn;Rn) ,

with estimates which are independent of 0 < δ < δ0. To see this, we write

|A (x) (∇v ∗ ψδ) (x) − [(A (x)∇v) ∗ ψδ] (x)|

≤
ˆ
B(0,δ)

|A (x)−A (x− z)| |∇v (x− z)|ψδ (z) dz

≤ Lip (A)

ˆ
B(0,δ)

|z| |∇v (x− z)|ψδ (z) dz

≤ δ Lip (A)

ˆ
B(0,δ)

|∇v (x− z)|ψδ (z) dz

= δ Lip (A) [|∇v| ∗ ψδ] (x) .

Thus, by Young’s inequality for convolutions, we deduce

‖A (∇v ∗ ψδ) − (A (x)∇v) ∗ ψδ‖Lp(Rn)

≤ δ Lip (A) ‖|∇v| ∗ ψδ‖Lp(Rn)

≤ δ Lip (A) ‖ψδ‖L n
n−1 (Rn)

‖∇v‖
L
np
n+p (Rn)

.
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Now, since v = ηu, we clearly have

‖∇v‖
L
np
n+p (Rn)

≤ C (η) ‖u‖
W

1,
np
n+p (Ω)

.

Also, a direct computation yields

‖ψδ‖L n
n−1 (Rn)

=
1

δn

(ˆ
Rn

[
ψ
(x
δ

)] n
n−1

dx

)n−1
n

=
1

δn

(
δn

ˆ
Rn

[ψ (z)]
n
n−1 dz

)n−1
n

=
1

δ
‖ψ‖

L
n
n−1 (Rn)

.

Combining these last three estimates, we arrive at

‖A (∇v ∗ ψδ)− (A (x)∇v) ∗ ψδ‖Lp(Rn)

≤ C (η) Lip (A) ‖ψ‖
L

n
n−1 (Rn)

‖u‖
W

1,
np
n+p (Ω)

.

Now note that we have

divG2 (u, η) ∗ ψδ = div [G2 (u, η) ∗ ψδ] := divH2.

Moreover, we have the estimate

‖G2 (u, η) ∗ ψδ‖Lp(Rn) ≤ ‖ψδ‖L1(Rn) ‖G2 (u, η)‖Lp(Rn)

= ‖ψ‖L1(Rn) ‖G2 (u, η)‖Lp(Rn)

= ‖ψ‖L1(Rn) ‖ηF + uA (∇η)‖Lp(Rn)

≤ C
(
η, ‖A‖L∞(Ω)

)
‖ψ‖L1(Rn)

(
‖F‖Lp(Ω) + ‖u‖Lp(Ω)

)
.

By Sobolev embedding, this implies

‖G2 (u, η) ∗ ψδ‖Lp(Rn) ≤ C
(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
.

Now we show that if u ∈W 1, npn+p (Ω) , then

H1 := G1 (u, η) ∗ ψδ ∈ L
np
n+p (Rn) .

Indeed, we have

‖G1 (u, η) ∗ ψδ‖
L
np
n+p (Rn)

≤ ‖ψδ‖L1(Rn) ‖G1 (u, η)‖
L
np
n+p (Rn)

= ‖ψ‖L1(Rn) ‖G1 (u, η)‖
L
np
n+p (Rn)

= ‖ψ‖L1(Rn) ‖〈∇η, F +A (x) (∇u)〉‖
L
np
n+p (Rn)

≤ C
(
η, ‖A‖L∞(Ω)

)
‖ψ‖L1(Rn)

(
‖F‖

L
np
n+p (Ω)

+ ‖∇u‖
L
np
n+p (Ω)

)
≤ C

(
η, ‖A‖L∞(Ω) ,Ω

)
‖ψ‖L1(Rn)

(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
.
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To summarize, we have so far shown that vδ satisfies the PDE

−div (A (x)∇vδ) = −H1 − divH2 − divH3 in Ωδ0 ,

where H1 ∈ L
np
n+p (Rn) and H2, H3 ∈ Lp (Rn;Rn) if u ∈ W 1, npn+p (Ω) and we

have the estimates

‖H1‖
L
np
n+p (Rn)

≤ C
(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
,

‖H2‖Lp(Rn) ≤ C
(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
‖H3‖Lp(Rn) ≤ C ‖u‖W 1,

np
n+p (Ω)

.

Now we fix ε > 0 and by the uniform continuity of A, choose a radius 0 < R <
δ0/4 such that

sup
x∈Ωδ0

‖A−A (x)‖L∞(B2R(x)) < ε.

Now since Ωδ0 is precompact, we can cover Ωδ0 by finitely many balls of radius
R such that the number of overlapping is bounded above by a constant that
depends only on the dimension n and the set Ωδ0 , but not on R or δ. Thus,
there are finitely many balls with centers x1, . . . , xN such that

Ωδ0 ⊂⊂
N⋃
i=1

BR (xi) .

Now for each 1 ≤ i ≤ N, we write the PDE as

− div (A (xi)∇vδ) = −H1 − divH2 − divH3 − div ([A (xi)−A (x)]∇vδ)

in B2R (xi) . Thus, for each 1 ≤ i ≤ N, we have

‖∇vδ‖Lp(BR(xi))
≤ C

(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
+ C ‖A−A (x)‖L∞(B2R(xi))

‖∇vδ‖Lp(B2R(xi))

≤ C
(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
+ Cε ‖∇vδ‖Lp(B2R(xi))

.

Since the number of overlapping balls is bounded by a constant Coverlap, which
is independent of R and δ, summing the estimates, we deduce

‖∇vδ‖Lp(⋃Ni=1 BR(xi)) ≤ C
(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
+ CCoverlapε ‖∇vδ‖Lp(⋃Ni=1 B2R(xi)) .

Thus, choosing ε > 0 small enough to absorb the last term in the left, we have

‖∇vδ‖Lp(Ω) ≤ C
(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
.
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Now since vδ has compact support in Ω, by Poincaré inequality, we have

‖vδ‖W 1,p(Ω) ≤ C
(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
.

Thus, {vδ}δ>0 is uniformly bounded in W 1,p (Ω) and thus, up to the extraction
of a subsequence, converges weakly in W 1,p (Ω) . But since the weak limit can
only be v, we have

vδ ⇀ v weakly in W 1,p (Ω) .

Thus, by weak lower semicontinuity of the norm, we have

‖v‖W 1,p(Ω) ≤ lim inf
δ→0

‖vδ‖W 1,p(Ω) ≤ C
(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
.

But since η ≡ 1 on Ω1, we deduce

‖u‖W 1,p(Ω1) ≤ ‖v‖W 1,p(Ω) ≤ C
(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
.

Thus, we have proved that the following.

Theorem 51. Let Ω ⊂ Rn is a bounded open set. A ∈ Lip
(
Ω; Symmn×n

)
is a

symmetric n×n matrix field which is Lipschitz and uniformly elliptic, i.e. there
exists a constant λ > 0 such that

〈A (x) ξ, ξ〉 ≥ λ |ξ|2 for every ξ ∈ Rn and every x ∈ Ω.

Let 1 < p < ∞ and let F ∈ Lp (Ω;Rn) . If u ∈ W 1, npn+p (Ω) is a distributional
solution of

−div (A (x)∇u) = divF in Ω,

then u ∈W 1,p
loc (Ω) and for any Ω1 ⊂⊂ Ω, there exists a constant

C = C
(
n, p,Ω1,Ω, λ,LipA, ‖A‖L∞(Ω)

)
> 0

such that we have the estimate

‖u‖W 1,p(Ω1) ≤ C
(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
.

By bootstrapping, one can actually have the following.

Theorem 52. Let Ω ⊂ Rn is a bounded open set. A ∈ Lip
(
Ω; Symmn×n

)
is a

symmetric n×n matrix field which is Lipschitz and uniformly elliptic, i.e. there
exists a constant λ > 0 such that

〈A (x) ξ, ξ〉 ≥ λ |ξ|2 for every ξ ∈ Rn and every x ∈ Ω.
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Let 1 < q < p < ∞ and let F ∈ Lp (Ω;Rn) . If u ∈ W 1,q (Ω) is a distributional
solution of

−div (A (x)∇u) = divF in Ω,

then u ∈W 1,p
loc (Ω) and for any Ω1 ⊂⊂ Ω, there exists a constant

C = C
(
n, p,Ω1,Ω, λ,LipA, ‖A‖L∞(Ω)

)
> 0

such that we have the estimate

‖u‖W 1,p(Ω1) ≤ C
(
‖F‖Lp(Ω) + ‖u‖W 1,q(Ω)

)
.

The proof is easy. Without loss of generality, we can assume 1 < q < n. Now

if nq/ (n− q) < p, then applying the previous theorem, we have u ∈ W 1, nqn−q
loc .

Now if nq/ (n− q) ≥ n, then u is also in W 1,n−ε
loc for any ε > 0 and we can choose

ε > 0 such that n(n− ε)/ε = p. If nq/ (n− q) < n and nq/ (n− 2q) < p, we can

apply the last result again to conclude that u ∈W 1, nq
n−2q

loc . We can continue this
process until we reach n, in which case we reach p in the next step, or till we
reach p.

Remark 53. Note that Theorem 52 is not always useful. However, for 2 < p <
∞, this immediately establishes the desired interior Lp estimate, as existence
theory gives the existence of a W 1,2 weak solution and we can apply the result
with q = 2.

4.4 Boundary estimates

We are not going to prove the boundary Lp estimates. We would only sketch
the basic arguments. By localizing and flattening the boundary, the boundary
estimates reduce to deriving the Lp estimates for solutions in a half ball. We
would just show how a reflection can argument can reduce the Lp estimates in
a half ball to interior estimates in a ball.

Proposition 54. Let 1 < p < ∞ and let R > 0. Let F ∈ Lp
(
B+
R ;Rn

)
and let

u ∈ C∞
(
B+
R

)
be such that u ≡ 0 on ∂B+

R ∩ {x ∈ Rn : xn = 0} and u vanishes

in a neighborhood of the curved boundary of B+
R . Let u satisfy

−div (A∇u) = divF in B+
R ,

where A is a constant symmetric n× n matrix which is uniformly elliptic. Set

ũ (x) :=

{
u (x) if xn > 0,

− u (x1, . . . , xn−1,−xn) if xn < 0.

Then ũ ∈ C∞c (BR) satisfies the equation

−div
(
Ã∇ũ

)
= div F̃ in BR,
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where Ã is also a symmetric uniformly elliptic matrix with the same ellipticity
constant as A and F̃ ∈ Lp (BR) with an estimate∥∥∥F̃∥∥∥

Lp(BR;Rn)
≤ c ‖F‖Lp(B+

R ;Rn) ,

The proof is a straight forward calculation and is skipped.

4.5 Failure of the estimates at endpoints

Now we give examples to show that the Lp estimates does not extend to bor-
derline cases, i.e. p = 1 and p =∞.

Example 55 (Failure of L1 estimate). Let D ⊂ R2 be the open unit disk. Define

u (x) = log log
e

|x|
for a.e. x ∈ D.

Then u ∈W 1,2
0 (D) , ∆u ∈ L1 (D), but u /∈W 2,1 (D) .

Example 56 (Failure of L∞ estimate). Let D ⊂ R2 be the open unit disk.
Define, in polar coordinates,

u (r, θ) = r2 log r cos 2θ a.e. in D.

Then u ∈W 1,2
0 (D) , ∆u ∈ L∞ (D), but u /∈W 2,∞ (D) .

5 BMO and interpolation

So far, we have derived the Lp estimates using the singular integral estimates.
Recall that we have interpolated between a weak (1, 1) estimate and a strong
(2, 2) estimate to obtain the result for 1 < p ≤ 2 and obtain the case 2 < p <∞
by duality. It is possible to somewhat reverse the manner of doing things.
Roughly speaking, instead of interpolating between ‘almost L1 estimate and L2

estimate, we can also interpolate between ‘almost L∞’ estimate and L2 estimate.
One can also avoid singular integrals altogether and instead directly establish
estimates for energy-weak solutions.

5.1 BMO and the John-Nirenberg estimate

We now define the BMO space, which is going to serve as our substitute for
L∞.

Definition 57. Let Q be a n-dimensional cube in Rn. We define the space of
functions of bounded mean oscillation BMO(Q) as:

BMO(Q) :=

{
u ∈ L1(Q) : sup

Q′⊂Q

1

|Q′|

ˆ
Q′
|u− (u)Q′ | <∞

}
where the supremum is taken over all n-dimensional subcubes Q′ of Q.
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The function

[u]BMO(Q) := sup
Q′⊂Q

ˆ
Q′
|u− (u)Q′ |

forms a seminorm on BMO(Q).
By BMO(Q)\{0} we will mean BMO with the equivalence class of 0 re-

moved, where the equivalence relation is u ∼ v if and only if u− v = constant.
One of the important properties of BMO functions is the following estimate,

known as the John-Nirenberg inequality.

Theorem 58 (John-Nirenberg lemma). Let Q0 be a n-dimensional cube in Rn.
There are constants c1, c2 > 0 depending only on n such that

µ ({|u− (u)Q| > t}) ≤ c1e
−c2t

[u]BMO(Q) |Q|

for all cubes with sides parallel to the axes Q ⊂ Q0 and all t > 0.

Proof. We may assume without loss of generality that, [u]BMO(Q) = 1 since

{|u− (u)Q| > t} =

{∣∣∣∣ u

[u]BMO(Q)
− (u)Q

[u]BMO(Q)

∣∣∣∣ > t

[u]BMO(Q)

}
It also suffices to prove for Q0, as the BMO(Q) ≤ BMO(Q0) for any subcube
Q ⊂ Q0.

Now, choose an

α > 1 ≥ 1

|Q0|

ˆ
Q0

|u− (u)Q0
|

Now, apply the Calderon-Zymund decomposition to |u − (u)Q0
| with α to

obtain a collection of non-overlapping cubes {Q1
i } such that

α ≤ 1

|Q1
i |

ˆ
Q1
i

|u− (u)Q0
| ≤ 2nα

|u− (u)Q0
| ≤ α a.e. x ∈ Q0\

⋃
i

Q1
i

So we have ∑
i

|Q1
i | ≤

1

α

ˆ
Q0

|u− (u)Q0
| ≤ 1

α
|Q0|

and

|(u)Q1
i
− (u)Q0

| ≤

∣∣∣∣∣ 1

|Q1
i |

ˆ
Q1
i

u− 1

|Q1
i |

ˆ
Q1
i

(u)Q0

∣∣∣∣∣ ≤ 1

|Q1
i |

ˆ
Q1
i

|u− (u)Q0
| ≤ 2nα

Now, the idea is to iterate the CZ decomposition. The definition of the BMO
seminorm gives us that

1

|Qi|

ˆ
Qi

|u− (u)Qi | ≤ 1 < α
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Now, we apply the decomposition to |u−(u)Qi | on each of the Q1
i to obtain a

collection of non-overlapping subcubes {Q2
j} so that on each subcube Q2

j (which

sits inside Q1
i say), we have

α ≤ 1

|Q2
j |

ˆ
Q2
j

|u− (u)Q1
i
| ≤ 2nα

|u− (u)Q1
i
| ≤ α a.e. x ∈ Q1

i \
⋃
i

Q2
j

We have for the whole collection {Q2
j}∑

j

|Q2
j | ≤

∑
i

1

α

ˆ
Q1
i

|u− (u)Q1
i
| ≤ 1

α

∑
i

|Qi| ≤
1

α2
|Q0|

So we have,

|u− (u)Q0
| ≤ 2.2nα a.e. x ∈ Q0\

⋃
j

Q2
j

This is clear, since if x ∈ Q0\
⋃
j Q

2
j and not in any of the Q1

i s, |u− (u)Q0
| ≤ α

and if x is in some Q1
i , then we may use triangle inequality as

|u− (u)Q0 | ≤ |u− (u)Q1
i
|+ |(u)Q0 − (u)Q1

i
|

≤ α+ 2nα ≤ 2.2nα

Continuing this process, for each integer k ≥ 1, we have a collection of non-
overlapping cubes {Qki } such that,∑

i

|Qki | ≤
1

αk
|Q0|

and
|u− (u)Q0

| ≤ k.2nα a.e. x ∈ Q0\
⋃
i

Qki

Thus,

|{x ∈ Q0 : |u(x)− (u)Q0
| > k.2nα}| ≤

∑
i

|Qki | ≤
1

αk
|Q0|

For any t, there exists a k so that t ∈ [k.2nα, (k + 1).2nα). We have

α−k = α.α−(k+1) = α.e−(k+1) logα ≤ α.e−
logα
2nα t

So we have
|{x ∈ Q0 : |u(x)− (u)Q0

| > t}| ≤ αe−
logα
2nα t|Q0|.

This completes the proof.
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This would imply a result that is going to be crucial for us. But first let us
define the Campanato spaces. Let Ω ⊂ Rn be Lipschitz domain. We will denote
Bρ(x0) ∩ Ω by Ω(x0, ρ).

Definition 59. We define the Campanato space Lp,λ(Ω) for every 1 ≤ p ≤ ∞
and λ ≥ 0 as the collection of all f ∈ Lp(Ω) such that

[u]
p
Lp,λ(Ω) := sup

x0∈Ω; ρ>0

1

ρλ

ˆ
Ω(x0,ρ)

|u− (u)x0,ρ|p < +∞

Remark 60. Note that L1,n is, by definition, BMO, where we have used balls
instead of cubes, which changes nothing.

Corollary 61. For every 1 ≤ p < ∞, the Campanato space Lp,n(Q0) is iso-
morphic to BMO(Q0)

Proof. If we have a u ∈ BMO(Q0), then we have

ˆ
Q

|u− (u)Q|p = p

ˆ ∞
0

tp−1 |{x ∈ Q : |u(x)− (u)Q| > t}| dt

≤ p.c1
ˆ ∞

0

tp−1e
− c2t

[u]BMO(Q0) |Q|dt

Making a substitution c2t
[u]BMO(Q0)

= s, we have

≤ pc1
(

[u]BMO(Q0)

c2

)p ˆ ∞
0

sp−1e−sds

≤ C(n, p)[u]pBMO(Q0)|Q|

Dividing by |Q| and letting side length of Q be ρ and taking supremum over
ρ > 0, we get that

[u]Lp,n(Ω) ≤ C(n, p)[u]BMO(Q0)

The converse directly follows from Jensen’s inequality. If u ∈ Lp,λ(Ω), then we
have (

1

|Q|

ˆ
Q

|u− (u)Q|
)p
≤ 1

|Q|

ˆ
Q

|u− (u)Q|p

So taking supremum over Q ⊂ Q0, we have

[u]pBMO(Q0) ≤ [u]pLp,n(Q0)

It also follows from this that if u ∈ BMO(Q0) then u ∈ Lp(Q0) for all
1 ≤ p <∞.

We state a theorem that gives equivalent statements to the John Nirenberg
Lemma
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Theorem 62. The following are equivalent:

1. u ∈ BMO(Q0)

2. There exist c1, c2 > 0 such that for Q ⊂ Q0 we have,

µ ({|u− (u)Q| > t}) ≤ c1e
−c2t

[u]BMO(Q) |Q|

3. There exists c3, c4 > 0 so that for Q ⊂ Q0 we have,

 
Q

ec3|u−(u)Q| − 1 < c4

4. There exist c5, c6 > 0 so that,( 
Q

ec6u
)( 

Q

e−c6u

)
≤ c5

5.2 Sharp maximal function and Fefferman-Stein inequal-
ity

Definition 63. The sharp function of u ∈ L1(Q0) as

u](x) = sup
x∈Q⊂Q0

1

|Q|

ˆ
Q

|u(y)− (u)Q|dy

We define the centered sharp function as:

ũ(x) := sup
Q(x)⊂Q

1

|Q(x)|

ˆ
Q(x)

|u(y)− (u)Q(x)|dy

where the supremum is taken over cubes with center x. We have

ũ(x) ≤ u](x) ≤ 2nũ(x), [u]BMO(Q0) = ‖ũ‖L∞(Q0)

We further have,

u](x) ≤ 2nũ(x) ≤ 2n sup
Q(x)⊂Q0

1

|Q(x)|

ˆ
Q(x)

|u(y)− (u)Q|

≤ 2n sup
Q(x)⊂Q0

1

|Q(x)|

ˆ
Q(x)

|u(y)|dy + (u)Q

≤ 2n.2. sup
Q(x)⊂Q0

1

|Q(x)|

ˆ
Q(x)

|u(y)|dy

≤ 2n+1Mu(x)

Hence, if u ∈ Lp(Q0) for 1 < p ≤ ∞, then u] ∈ Lp(Q0). The converse is the
following theorem important result.
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Theorem 64 (Fefferman-Stein). Consider u ∈ L1(Q0), and suppose that u] ∈
Lp(Q0) for some p > 1. Then u ∈ Lp(Q0) and

‖u‖Lp(Q0) ≤ c(n, p)
{
‖u]‖Lp(Q0) + |Q0|1/p

1

|Q0|

ˆ
Q0

|u|
}

We begin with a proposition.

Proposition 65. Set

µ(t) =
∑
i

|Qti|

where {Qti} is the Calderon-Zygmund family of cubes for |u| at level t. Then we
have

µ((2n + 1)t) ≤
∣∣{x ∈ Q0 : u] > βt

}∣∣+ βµ(t)

for any β ∈ (0, 1) and any t with

1

|Q0|

ˆ
Q0

|u| < t

Proof. Set s = (2n + 1)t. Let {Qtj} and {Qsi} be the Calderon-Zygmund family
of cubes corresponding to t and s respectively. We have

µ(s) =
∑
j

∑
i:Qsi⊂Qtj

|Qsi |

For a fixed j, we have two possibilities:
Case 1: Qtj ⊂ {x ∈ Q0 : u] > βt}∑

i:Qsi⊂Qtj

|Qsi | ≤
∣∣{x ∈ Q0 : u] > βt

}∣∣
Case 2: There is a y ∈ Qtj so that u] ≤ βt. In this case we have,

1

|Qtj |

ˆ
Qtj

|u− (u)Qtj | ≤ βt

So,

1

|Qsi |

ˆ
Qsi

|u− (u)Qtj | ≥
1

|Qsi |

ˆ
Qsi

|u| − 1

|Qsi |

ˆ
Qsi

|u| − (u)Qtj

≥ 1

|Qsi |

ˆ
Qsi

|u| − 1

|Qtj |

ˆ
Qtj

|u| ≥ s− 2nt = t

So we have,

t
∑

i:Qsi⊂Qtj

|Qsi | ≤
ˆ
Qsi

|u− (u)Qtj | ≤
ˆ
Qtj

|u− (u)Qtj | ≤ βt|Q
t
j |
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which gives, ∑
i:Qsi⊂Qtj

≤ β|Qtj |

In both cases, summing over j, we get

µ(s) ≤
∣∣{x ∈ Q0 : u] > βt

}∣∣+ βµ(t)

Now, we give a proof of Theorem (64).

Proof. We have by the above proposition,

µ(t) ≤
∣∣{x ∈ Q0 : u] > β(2n + 1)−1t

}∣∣+ βµ
(
(2n + 1)−1t

)
for

1

|Q0|

ˆ
Q0

|u| < t

(2n + 1)

Define

t0 := (2n + 1)
1

|Q0|

ˆ
Q0

|u|

We have,
Fu(t) ≤ µ(t)

Now,

‖u‖pLp(Q0) = p

ˆ ∞
0

tp−1Fu(t)

≤ p
ˆ ∞

0

tp−1µ(t)

For a s > t0, we define

Is := p

ˆ s

0

tp−1µ(t)dt

And we have,

Is ≤ p
ˆ t0

0

tp−1µ(t) + p

ˆ s

t0

tp−1µ(t)

≤ (I) + (II)

We have,

(I) = p

ˆ t0

0

tp−1µ(t)

≤
ˆ t0

0

tp−1 1

t

ˆ
Q0

|u|

≤ c(n, p) 1

|Q0|

(ˆ
Q0

|u|
)p
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and for (II), making use of the above proposition we get,

(II) = p

ˆ s

t0

tp−1µ(t)

≤ p
ˆ s

t0

tp−1
∣∣{u] > β(2n + 1)−1t

}∣∣+ βp

ˆ s

t0

tp−1µ
(
(2n + 1)−1t

)
≤ (i) + (ii)

Now, by a change of variable, we have

(i) = p

ˆ s

t0

tp−1
∣∣{u] > β(2n + 1)−1t

}∣∣ dt
≤ p

(
2n + 1

β

)p ˆ ∞
0

sp−1
∣∣{u] > s

}∣∣ ds
≤
(

2n + 1

β

)p ˆ
Q0

|u]|p

and for (ii), we have again by change of variable,

(ii) = βp

ˆ s

t0

tp−1µ
(
(2n + 1)−1t

)
dt

≤ βp (2n + 1)
p
ˆ (2n+1)−1s

(2n+1)−1t0

sp−1µ(s)ds

Noting that s > (2n + 1)−1s we have,

≤ βp(2n + 1)p
ˆ s

0

sp−1µ(s)ds

≤ β(2n + 1)pIs

Choosing β = 1
2 (2n + 1)−p, and combining everything till now, we have,

1

2
Is ≤ c(n, p)

1

|Q0|

(ˆ
Q0

|u|
)p

+ c(n, p)

ˆ
Q0

|u]|p

Since this is true for all s, we have

ˆ
Q0

|u|p ≤ c(n, p)
{

1

|Q0|

(ˆ
Q0

|u|
)p

+

ˆ
Q0

|u]|p
}

The stated result now follows with an application of Jensen’s inequality.

5.3 Stampacchia interpolation theorem

As a consequence, we can prove the Stampacchia interpolation theorem, which
allows us to interpolate between Lp and BMO.
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Theorem 66. Let 1 ≤ p < ∞ and let T be a linear operator of strong type
(p, p) and bounded from L∞ into BMO, i.e.,

‖Tu‖Lp(Q0) ≤ C1‖u‖Lp(Q0) ∀ u ∈ Lp(Q0)

and
[Tu]BMO(Q0) ≤ C2‖u‖L∞(Q0) ∀ u ∈ L∞(Q0)

Then, T is of strong type (r, r) for all r ∈ (p,∞)

Proof. Consider the map T defined by

T (u) := (Tu)]

We have that, T is sublinear and
1. is of type (p, p) if p > 1 since

‖T u‖Lp(Q0) ≤ c(n)‖M(Tu)‖LpQ0

≤ c(n, p)‖Tu‖Lp(Q0)

≤ c(n, p)c1‖u‖Lp(Q0)

2. is of weak type (1, 1) since∣∣{(Tu)] > t
}∣∣ ≤ |{M(Tu) > t/c(n)}|

≤ C(n)
1

t
‖Tu‖L1(Q0)

≤ C(n)c1
1

t
‖u‖Lp(Q0)

3. is of strong type (∞,∞) since

‖T (u)‖L∞(Q0) ≤ 2n[Tu]BMO(Q0) ≤ 2nc2‖u‖L∞(Q0)

So by the Marcinkiewicz interpolation theorem, we have T is of strong type
(r, r) for all r ∈ (q,∞). So, we have for all r ∈ (q,∞),

‖(Tu)]‖Lr(Q0) ≤ c‖u‖Lr(Q0)

If p = 1, we already have ‖Tu‖L1(Q0) ≤ c1‖u‖L1(Q0). So by Hölder’s we will
have,

‖Tu‖L1(Q0) ≤ c3‖u‖Lr(Q0)

If p > 1, by Hölder’s inequality and the strong (p, p) estimate, we have

‖Tu‖L1(Q0) ≤ c4‖Tu‖Lp(Q0) ≤ c5‖u‖Lp(Q0) ≤ c6‖u‖Lr(Q0)

Now, using Fefferman-Stein, we have for all r ∈ (p,∞)

‖Tu‖Lr(Q0) ≤ c(n, p)
{
‖(Tu)]‖Lr(Q0) + |Q0|1/r

1

|Q0|

ˆ
Q0

|Tu|
}

≤ c(n, p)
{
c‖u‖Lr(Q0) + |Q0|(1/r)−1‖Tu‖L1(Q0)

}
≤ c(n, p)

{
c‖u‖Lr(Q0) + |Q0|(1/r)−1c6‖u‖Lr(Q0)

}
≤ c7‖u‖Lr(Q0)

54



6 Lp estimates using Campanato method

6.1 Global Lp estimates for constant coefficients for p ≥ 2

We now prove the Lp estimates using the Campanato-Stampacchia method.
Consider the problem{

−div(A∇u) = divF in Ω,

u = 0 on ∂Ω.

Let u ∈ W 1,2
0 (Ω) be the unique solution. Define the operator T by F 7→ ∇u.

We have that T is strong type (2, 2) as, by the weak formulation with the test
function as u itself, we have that

Λ

ˆ
Ω

|∇u|2 ≤
ˆ

Ω

〈A∇u,∇u〉 =

ˆ
Ω

〈F,∇u〉 ≤ 1

ε

ˆ
Ω

|F |2 + ε

ˆ
Ω

|∇u|2

Choosing small enough ε, we have that

‖∇u‖L2(Ω) ≤ C‖F‖L2(Ω)

The Camapanto estimates ( including boundary estimates ) tells us that T maps
maps continuously L∞(Ω) into BMO. Indeed, by the Campanato estimate (
see Chapter 5 of [3] ) if F ∈ L2,n(Ω;Rn), we have

‖∇u‖L2,n(Ω) ≤ c
(
‖∇u‖L2(Ω) + [F ]L2,n(Ω)

)
where we can use ‖∇u‖L2(Ω) ≤ C‖F‖L2(Ω) to get

‖∇u‖L2,n(Ω) ≤ c(‖F‖L2,n(Ω))

So noting that
[F ]L2,n(Ω) ≤ c‖F‖L∞(Ω)

and using the fact that L2,n is isomorphic to BMO with equivalent seminorms,
we have

[∇u]BMO(Ω) ≤ c‖F‖L∞(Ω)

Stampacchia’s interpolation theorem immediately gives us that, T is of strong
type (r, r) for all r ∈ (2,∞). So we have the estimate

‖∇u‖Lr(Ω) ≤ c‖F‖Lr(Ω)

For the general problem{
−div(A∇u) = divF in Ω,

u = g on ∂Ω.
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Noting that v := u − g ∈ W 1,2
0 (Ω) solves the homogeneous boundary value

problem, we can write{
−div(A∇v) = div(F +A∇g) in Ω,

v = 0 on ∂Ω.

Thus, we have the following theorem

Theorem 67. Let u ∈W 1,2(Ω) solve{
−div(A∇u) = divF in Ω,

u = g on ∂Ω.

where A satisfies the uniform ellipticity condition, F ∈ Lp (Ω;Rn) and g ∈
W 1,p(Ω) for some 2 ≤ p <∞. Then ∇u ∈ Lp and we have the estimate,

‖∇u‖Lp(Ω) ≤ c
(
‖∇g‖Lp(Ω) + ‖F‖Lp(Ω)

)
.

6.2 Global Lp estimates for constant coefficients for 1 <
p < 2

For the case 1 < p < 2, we use a duality argument, along with uniqueness and
approximation.

Theorem 68. Let F ∈ Lp (Ω;Rn) and g ∈ W 1,p(Ω) for some 1 < p < 2.. Let
A be a symmetric n × n matrix which is uniformly elliptic. Then there exists
unique u ∈W 1,p(Ω) which solves{

−div(A∇u) = divF in Ω,

u = g on ∂Ω.

Moreover, we have the estimate,

‖∇u‖Lp(Ω) ≤ c
(
‖∇g‖Lp(Ω) + ‖F‖Lp(Ω)

)
.

Proof. Assume g = 0, as we can reduce to this case as before. Let {Fε}ε>0 ⊂
C∞c (Ω;Rn) be a sequence such that

Fε → F strongly in Lp (Ω) .

Since Fε ∈ L2 (Ω;Rn) for every ε > 0, by Lax-Milgram or variational method,
we can find uε ∈W 1,2

0 (Ω) solving{
−div (A∇uε) = divFε in Ω,

uε = 0 on ∂Ω.

Note that this impliesˆ
Ω

〈A∇uε,∇ϕ〉 = −
ˆ

Ω

〈Fε,∇ϕ〉 for any ϕ ∈ C∞c (Ω) .
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Consequently, by density of C∞c (Ω) in W 1,p′

0 (Ω) , we have
ˆ

Ω

〈A∇uε,∇ψ〉 = −
ˆ

Ω

〈Fε,∇ψ〉 for any ψ ∈W 1,p′

0 (Ω) . (16)

Now by the dual characterization of norm and the density of C∞c (Ω;Rn) in
Lp
′
(Ω;Rn) , we have

‖∇uε‖Lp(Ω) = sup
ζ∈C∞c (Ω;Rn),
‖ζ‖

Lp
′
(Ω;Rn)

≤1

∣∣∣∣ˆ
Ω

〈∇uε, ζ〉
∣∣∣∣ = sup

ζ∈C∞c (Ω;Rn),
‖ζ‖

Lp
′
(Ω;Rn)

≤1

∣∣∣∣ˆ
Ω

〈uε,div ζ〉
∣∣∣∣ .

Now, since p′ > 2, we can find ψ ∈W 1,p′

0 (Ω) solving{
−div (Aᵀ∇ψ) = div ζ in Ω,

ψ = 0 on ∂Ω.

By Theorem 67, we have the estimate

‖∇ψ‖Lp′ (Ω;;Rn) ≤ c‖ζ‖Lp′ (Ω;Rn). (17)

Now we have,

sup
ζ∈C∞c (Ω;Rn),
‖ζ‖

Lp
′
(Ω;Rn)

≤1

∣∣∣∣ˆ
Ω

〈uε,div ζ〉
∣∣∣∣ = sup

ζ∈C∞c (Ω;Rn),
‖ζ‖

Lp
′
(Ω;Rn)

≤1

∣∣∣∣ˆ
Ω

〈uε,div (Aᵀ∇ψ)〉
∣∣∣∣

= sup
ζ∈C∞c (Ω;Rn),
‖ζ‖

Lp
′
(Ω;Rn)

≤1

∣∣∣∣ˆ
Ω

〈∇uε, Aᵀ∇ψ〉
∣∣∣∣

= sup
ζ∈C∞c (Ω;Rn),
‖ζ‖

Lp
′
(Ω;Rn)

≤1

∣∣∣∣ˆ
Ω

〈A∇uε,∇ψ〉
∣∣∣∣

(16)
= sup

ζ∈C∞c (Ω;Rn),
‖ζ‖

Lp
′
(Ω;Rn)

≤1

∣∣∣∣ˆ
Ω

〈Fε,∇ψ〉
∣∣∣∣

≤ sup
ζ∈C∞c (Ω;Rn),
‖ζ‖

Lp
′
(Ω;Rn)

≤1

‖Fε‖Lp(Ω;Rn)‖∇ψ‖Lp′ (Ω;Rn)

(17)

≤ sup
ζ∈C∞c (Ω;Rn),
‖ζ‖

Lp
′
(Ω;Rn)

≤1

‖Fε‖Lp(Ω;Rn)‖ζ‖Lp′ (Ω;Rn)

≤ c‖Fε‖Lp(Ω;Rn).

Hence, by Poincaré inequality, we have

‖∇uε‖W 1,p(Ω) ≤ C ‖∇uε‖Lp(Ω;Rn) ≤ C‖Fε‖Lp(Ω;Rn),
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where the constant in independent of ε > 0. Now, by the strong convergence in
Lp, {Fε}ε>0 is uniformly bounded in Lp(Ω;Rn) and thus, {uε}ε>0 is uniformly

bounded in W 1,p
0 (Ω). Hence, up to the extraction of a subsequence which we do

not relabel, we have

uε → u weakly in W 1,p(Ω)

for some u ∈W 1,p
0 (Ω). It is now easy to check that u ∈W 1,p

0 (Ω) solves{
−div(A∇u) = divF in Ω,

u = 0 on ∂Ω,

in the sense of distributions. Uniqueness follows from Lemma 69. This completes
the proof.

6.3 Uniqueness of solution in the nonvariational setting

In the last result, we have used the following uniqueness result, which establishes
uniqueness of solutions to the Dirichlet problem in cases where the solution is
not expected to have ‘finite energy’, i.e. solutions do not belong to W 1,2 (Ω) .

Lemma 69. Let F ∈ Lp (Ω;Rn) and g ∈ W 1,p(Ω) for some 1 < p < 2. Let A
be a symmetric n × n matrix which is uniformly elliptic. Then there exists at
most one u ∈W 1,p(Ω) which solves{

−div(A∇u) = divF in Ω,

u = g on ∂Ω.

Proof. By linearity of the equation, we only need to show that if v ∈ W 1,p
0 (Ω)

solves {
−div(A∇v) = 0 in Ω,

v = 0 on ∂Ω,
(18)

then v = 0. This would be a semi-trivial integration by parts argument if p ≥ 2.
In our case, however, it is somewhat more delicate. Since v solves (18), we have

ˆ
Ω

〈A∇v,∇ϕ〉 = 0 for any ϕ ∈ C∞c (Ω) .

Consequently, by density of C∞c (Ω) in W 1,p′

0 (Ω) , we have

ˆ
Ω

〈A∇v,∇ψ〉 = 0 for any ψ ∈W 1,p′

0 (Ω) . (19)

Now set

G := |∇v|p−2∇v.
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Since v ∈ W 1,p
0 (Ω), we have G ∈ Lp′(Ω;Rn). Since p′ > 2, by Lax-Milgram or

variational arguments, we can find ψ ∈W 1,p′

0 (Ω) which solves{
−div (Aᵀ∇ψ) = divG in Ω,

ψ = 0 on ∂Ω.

Using this, we deduce
ˆ

Ω

|∇v|p =

ˆ
Ω

〈∇v,G〉

= −
ˆ

Ω

〈v,divG〉 =

ˆ
Ω

〈v,div (Aᵀ∇ψ)〉 = −
ˆ

Ω

〈A∇v,∇ψ〉 (19)
= 0.

This proves v = 0 and completes the proof.

6.4 Interior Lp estimates for continuous coefficients

We now establish the interior regularity result in the case where the coefficients
of A are continuous.

Theorem 70. Let Ω ⊂ Rn is a bounded open set. A ∈ C
(
Ω; Symmn×n

)
is

a symmetric n × n matrix field which is uniformly continuous and uniformly
elliptic, i.e. there exists a constant λ > 0 such that

〈A (x) ξ, ξ〉 ≥ λ |ξ|2 for every ξ ∈ Rn and every x ∈ Ω.

Let 1 < p < ∞ and let F ∈ Lp (Ω;Rn) . If u ∈ W 1, npn+p (Ω) is a distributional
solution of

−div (A (x)∇u) = divF in Ω,

then u ∈W 1,p
loc (Ω) and for any Ω1 ⊂⊂ Ω, there exists a constant

C = C
(
n, p,Ω1,Ω, λ, ωA, ‖A‖L∞(Ω)

)
> 0

such that we have the estimate

‖u‖W 1,p(Ω1) ≤ C
(
‖F‖Lp(Ω) + ‖u‖

W
1,

np
n+p (Ω)

)
.

Proof. By a covering argument, it suffices to prove the estimate for balls. For a
point x0, take a ball BR(x0) ⊂⊂ Ω and a function η ∈ C∞c (BR(x0)) with η = 1
on BR/2(x0). We compute, for any ψ ∈ C∞c (Ω) ,

ˆ
Ω

〈A(x)∇(ηu),∇ψ〉 =

ˆ
Ω

〈A(x)η∇u,∇ψ〉+ 〈A(x)u∇η,∇ψ〉

=

ˆ
Ω

〈ηF,∇ψ〉+ 〈A(x)u∇η,∇ψ〉.
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Now, we perform the freezing trick to get,ˆ
Ω

〈(A(x)−A(x0) +A(x0)∇(ηu),∇ψ〉 =

ˆ
Ω

〈ηF,∇ψ〉+ 〈A(x)u∇η,∇ψ〉

which gives

ˆ
Ω

〈A(x0)∇(ηu),∇ψ〉

=

ˆ
Ω

〈A(x0)−A(x)∇(ηu),∇ψ〉+ 〈ηF,∇ψ〉+ 〈A(x)u∇η,∇ψ〉

for any ψ ∈ C∞c (Ω) . Thus, v := ηu solves the PDE

− div (A (x0)∇v) = div ((A(x0)−A(x))∇v)

− div(ηF )− div(A(x)u∇η) in BR(x0). (20)

Note that if u ∈W 1, npn+p (Ω) , then by the Sobolev inequality, we have u ∈ Lp (Ω)
and we have the estimate

‖u‖Lp(Ω) ≤ C ‖u‖W 1,
np
n+p (Ω)

.

Thus, by either Lax-Milgram and Theorem 67 or Theorem 68, we can find
w ∈W 1,p

0 (BR(x0)) such that

−∆w = −div( ηF︸︷︷︸
∈Lp

)− div(A(x)u∇η︸ ︷︷ ︸
∈Lp

) in BR(x0).

By the Lp estimate for constant coefficient operators, we deduce∇w ∈ Lp (BR(x0);Rn) .
Now, for a ζ ∈W 1,p

0 (BR(x0)), let θ ∈W 1,p
0 (BR(x0)) be the weak solution of

−div(A(x0)∇θ) = − div ((A(x0)−A(x))∇v +∇w)

Again, by the Lp estimates for constant coefficient operators, we have the esti-
mate

‖∇θ‖Lp(BR(x0)) ≤ c‖A(x0)−A(x)‖L∞(BR(x0))‖∇v‖Lp(BR(x0)) +c‖∇w‖Lp(BR(x0))

Now, consider the map T : W 1,p
0 (BR(x0))→W 1,p

0 (BR(x0)) given by

Tv = θ

Note that by Poincaré, Lp norm of the gradient is an equivalent norm on W 1,p
0 .

Now, choosing R > 0 small enough, we can ensure that this map is a contraction.
We have

‖θ1 − θ2‖Lp(BR(x0)) ≤ cω(R)‖∇v1 −∇v2‖Lp(BR(x0))

So by Banach’s fixed point theorem, we have a unique fixed point for T , say ψ.
Now, ψ ∈W 1,p

0 (BR(x0)) satisfies

−div(A(x0)∇ψ) = −div ((A(x0)−A(x))∇ψ +∇w) in BR(x0).
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So by uniqueness of W 1,p
0 (BR(x0)) solutions of the PDE (20), given by Lemma

69, ψ must coincide with ηu on BR(x0). Now, since η = 1 on BR/2(x0),, we have

u = ψ on BR/2(x0) and consequently, u ∈W 1,p
(
BR/2(x0)

)
. This completes the

proof.

As before, by bootstrapping, this implies the following result.

Theorem 71. Let Ω ⊂ Rn is a bounded open set. A ∈ C
(
Ω; Symmn×n

)
is

a symmetric n × n matrix field which is uniformly continuous and uniformly
elliptic, i.e. there exists a constant λ > 0 such that

〈A (x) ξ, ξ〉 ≥ λ |ξ|2 for every ξ ∈ Rn and every x ∈ Ω.

Let 1 < q < p < ∞ and let F ∈ Lp (Ω;Rn) . If u ∈ W 1,q (Ω) is a distributional
solution of

−div (A (x)∇u) = divF in Ω,

then u ∈W 1,p
loc (Ω) and for any Ω1 ⊂⊂ Ω, there exists a constant

C = C
(
n, p,Ω1,Ω, λ, ωA, ‖A‖L∞(Ω)

)
> 0

such that we have the estimate

‖u‖W 1,p(Ω1) ≤ C
(
‖F‖Lp(Ω) + ‖u‖W 1,q(Ω)

)
.

Appendix A Recap: Basic properties of Fourier
transform

A.1 Fourier transform in L1 (Rn)

Definition 72 (Fourier transform in L1). Let u ∈ L1 (Rn) . We define the
Fourier transform of u, denoted û, as

û (ξ) :=
1

(2π)
n
2

ˆ
Rn
e−i〈ξ,x〉u (x) dx for all ξ ∈ Rn.

Definition 73 (Inverse Fourier transform in L1). Let u ∈ L1 (Rn) . We define
the inverse Fourier transform of u, denoted ǔ, as

ǔ (x) :=
1

(2π)
n
2

ˆ
Rn
ei〈ξ,x〉u (ξ) dξ for all x ∈ Rn.

It is quite easy to see that the Fourier transform actually is finite for a.e.
ξ ∈ Rn. But we have something more.
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Proposition 74 (Plancherel-Parseval identity). Let u ∈ L1 (Rn) . Then û ∈
L∞ (Rn) and for all u, v ∈ L1 (Rn) , we have the identity, sometimes called the
Plancherel-Parseval identity,ˆ

Rn
uv̂ =

ˆ
Rn
ûv.

Definition 75 (Gaussian). For any point p ∈ Rn and any two real numbers
a, σ > 0, the Gaussian with mean p and variance σ2 is a real-valued function
f : Rn → R defined by

f (x) = ae−
|x−p|2

2σ2 for all x ∈ Rn.

A Gaussian is called normalized Gaussian if we have

a =
1

(2πσ2)
n
2
.

Proposition 76 (FT of Gaussian is another Gaussian). For any ε > 0, we haveˆ
Rn
ei〈x,ξ〉−ε|x|

2

dx =
(π
ε

)n
2

e−
|ξ|2
4ε .

A.2 Fourier transform in L2 (Rn)

Theorem 77 (Plancherel theorem). Let u ∈ L1 (Rn) ∩ L2 (Rn) . Then û, ǔ ∈
L2 (Rn) and we have

‖u‖L2(Rn) = ‖û‖L2(Rn) = ‖ǔ‖L2(Rn) .

We finish off our discussion of Fourier transform in L1 and L2 by a sim-
ple result, which records how Fourier transform behaves with respect to affine
change of variables.

Theorem 78. Let u ∈ L1 (Rn) . Then the following holds.

(i) Translation: For any a ∈ Rn, set τau := u (x+ a) . Then

(τau)
ˆ

(ξ) = ei〈ξ,a〉û (ξ) for ξ ∈ Rn.

(ii) Change of Variable: Let T ∈ GL (n,R) . Then

(u ◦ T )
ˆ

= |DetT |−1
û ◦
(
T−1

)T
.

In particular, we have

(a) Dilation: Let λ 6= 0 be a real number and let uλ (x) := u (λx) . Then

ûλ (ξ) =
1

|λ|n
û

(
1

λ
ξ

)
for ξ ∈ Rn.

(b) Orthogonal transformations: Let R ∈ O (n,R) . Then

(u ◦R)
ˆ

= û ◦R.
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A.3 Schwartz space S (Rn)

Definition 79 (Schwartz space). The space of rapidly decaying functions
on Rn or the Schwartz space on Rn, denoted by S (Rn) , is defined as

S (Rn) :=

{
u ∈ C∞ (Rn) : sup

x∈Rn

∣∣xβDαu (x)
∣∣ <∞ for all multiindices α, β

}
It is easy to see that we have

C∞c (Rn) ( S (Rn) ( Lp (Rn) ∩ C (Rn) ,

for any 1 ≤ p ≤ ∞ The following result is an important feature of the Schwartz
space.

Theorem 80. Let u ∈ S (Rn) and let P (x) be a polynomial in x ∈ Rn.
(i) Define the function g : Rn → R by

g (x) = P (x)u (x) for all x ∈ Rn.

Then g ∈ S (Rn) . Moreover, for every fixed polynomial P (x) , the map

u 7→ P (x)u

is a linear continuous map from S (Rn) to itself.

(ii) For each multiindex α, we have Dαu ∈ S (Rn) . Moreover, for every fixed
multiindex α, the map

u 7→ Dαu

is a linear continuous map from S (Rn) to itself.

Theorem 81. Let u ∈ S (Rn) . Then

(i) Derivatives to multiplication by ξ: For each multiindex α, we have

(Dαu)
ˆ

(ξ) = (iξ)
α
û (ξ) for every ξ ∈ Rn.

(ii) Multiplication by x to derivatives: For each multiindex α, we have

Dαû = [(−ix)
α
u]

ˆ
.

(iii) û, ǔ ∈ S (Rn) . Moreover, the maps F : S (Rn)→ S (Rn) given by

u 7→ û

and F−1 : S (Rn)→ S (Rn) given by

u 7→ ǔ

are both linear and continuous as maps from S (Rn) to itself.

Theorem 82 (Fourier inversion formula). Let u ∈ S (Rn) . Then

u = (û)
ˇ

= (ǔ)
ˆ
.

Theorem 83. Let u, v ∈ S (Rn) . Then

(u ∗ v)
ˆ

= (2π)
n
2 ûv̂ and (uv)

ˆ
= (2π)

−n2 û ∗ v̂.
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A.4 Tempered distributions

Definition 84. A tempered distribution on Rn is a continuous linear func-
tional on S (Rn) .

Remark 85. The definition says that a linear map T : S (Rn) → R is called
a tempered distribution if T is continuous. But since S (Rn) is a metric space,
T is continuous if and only if it is sequentially continuous, i.e. for every
sequence φs → φ in S (Rn) , we must have

T (φs)→ T (φ) .

Definition 86. Let T ∈ S ′ (Rn) . Then the Fourier transform of T , denoted T̂ ,
is another tempered distribution which is defined by the action

T̂ (φ) = T
(
φ̂
)

for every φ ∈ S (Rn) .

Definition 87. Let T ∈ S ′ (Rn) . Then for any multiindex α, the distribu-
tional derivative of T , denoted DαT, is another tempered distribution which
is defined by the action

DαT (φ) = (−1)
|α|
T (Dαφ) for every φ ∈ S (Rn) .

Remark 88. The reason for the somewhat strange sign is the integration by
parts formula.

Definition 89. Let T ∈ S ′ (Rn) and let P (x) be a polynomial in Rn. Then the
multiplication of T by P , is another tempered distribution which is denoted by
P (x)T and is defined by the action

P (x)T (φ) = T (P (x)φ) for every φ ∈ S (Rn) .
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