Math 232 Homework 2

Due on: September 5th 2017

- 1. Let A be a subspace of X, and let $a \in A$. In what follows let $i : A \to X$ be the inclusion map.
 - (a) If A is a retract of X then show that the induced homomorphism $i_*: \pi_1(A, a) \to \pi_1(X, a)$ is injective.
 - (b) if A is a deformation retract of X then show that i is a homotopy equivalence.
 - (c) Let $x \in S^1 \times S^1$. Show that $S^1 \times \{x\}$ is a retract of $S^1 \times S^1$, but not a deformation retract.
- 2. Show that the following are equivalent:
 - (a) X is homotopy equivalent to a point.
 - (b) Any point $x \in X$ is a deformation retract of X.
 - (c) The identity map $id_X : X \to X$ is *null-homotopic*, that is, homotopic to a constant map.

(These are all equivalent notions of "contractible").

- 3. Give an example of a space X, subspace A and two maps $f, g: X \to X$ such that:
 - (a) Both f and g restrict to the identity map id_A on the subspace A.
 - (b) f is homotopic to g.
 - (c) There is **no** homotopy f_t between $f = f_0$ and $g = f_1$ that fixes A throughout, that is, such that $f_t|_A = id_A$ for all $t \in [0, 1]$.

- 4. Suppose $X = A \cup B$ where A and B are non-empty open sets in X, such that
 - A and B are both simply-connected.
 - $A \cap B$ is path-connected.

Then show that X is simply-connected.

- 5. Prove that $\mathbb{R}^2 \setminus \{(0,0), (1,0)\}$ is not homeomorphic to $\mathbb{R}^3 \setminus \{(0,0,0), (1,0,0)\}$. (*Give a complete argument using only what has been taught so far.*)
- 6. Suppose $f: S^1 \to S^1$ is a map that satisfies f(-x) = -f(x) for all $x \in S^1$.
 - (a) Given three examples of such a map.
 - (b) Show that f cannot be homotopic to a constant map.