
MA 200 - Lecture 23

1 Recap
1. Defined surface areas/volumes of parametrised manifolds-without-boundary.

2. Defined manifolds-with-boundary.

2 Manifolds-with-boundary
Def: Let M ⊂ Rn be a k-dimensional manifold-with-boundary. A point p ∈ M is
said to be interior (NOT in the topological sense) if a neighbourhood of it is coordinate
parametrised by an open subset of Rk. It is said to be a boundary point otherwise. The
set of boundary points (denoted as ∂M ) is called the boundary of M .
The following criteria are useful when p ∈ V ⊂ M and α : U → V is a coordinate
parametrisation:

1. If U ⊂ Rk, p is an interior point (by definition).

2. If U ⊂ Hk but p is in Hk
xk>0 then p is an interior point (indeed simply shrink U ).

3. If U ⊂ Hk and p is on xk = 0, then p is a boundary point (indeed, if not, then a
neighbourhood of such a point on Hk is homeomorphic to an open subset of Rk

by means of a Cr map f whose derivative is an isomorphism. But by the IFT, the
image of f−1 is open in Rk whereas the original neighbourhood in Hk isn’t).

Finally, if M is a k-dimensional manifold-with-boundary such that ∂M ̸= ϕ (typi-
cally, this condition is understood), then ∂M is a k− 1-dimensional manifold-without-
boundary in Rn: Indeed, cover ∂M by open sets αi(Ui) ∩M = Vi ∩M that are bound-
ary coordinate parametrisations for M . Now consider the maps α̃i(x1, . . . , xk−1) =
αi(x1, . . . , xk−1, 0) from Ui ∩ {xk = 0} to Vi ∩ ∂M . These are Cr bĳective maps and
Dα̃i(v1, . . . , vk−1) = Dαi(v1, . . . , vk−1, 0) which is 0 iff vj = 0 ∀ j. Moreover, α̃i are home-
omorphisms to their images because α̃−1

i are restrictions of the continuous functions
α−1
i . Hence these are coordinate parametrisations.

Lastly, here is a theorem that allows us to prove for instance that the unit disc is a
manifold-with-boundary. (Another example is the hemisphere (HW) but it does not
follow from this theorem.)

Theorem 1. Let U ⊂ Rn be open and f : U → R be Cr. Let N = {x | f(x) ≤ 0} and let
∇f ̸= 0 for every point on f−1(0) ̸= ϕ. Then N is an n-dimensional manifold-with-boundary
in Rn and ∂N = f−1(0).
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Proof. Note that the set f < 0 is open (and hence a manifold-without-boundary) in
Rn. Let p ∈ f−1(0). Assume that ∂if ̸= 0. Consider the map H : U → Rn given by
H(x) = (x1, . . . , xi−1, xi+1, . . . , xn,−f). Now det(DH(p)) ̸= 0 and hence H is a local
diffeo from V ⊂ U → H(V ) near p. Moreover, Hn ≥ 0 iff f ≤ 0. Thus, α = H−1 takes
the open set H(V ) ∩Hk homeomorphically to its image and is a boundary coordinate
parametrisation. Moreover,Hn = 0 iff f = 0. Thus f−1(0) = ∂M . Lastly, the topological
boundary of f < 0 is f = 0 (why?)

We now define the integral of certain kinds of functions over manifolds with or
without boundary:
LetM be a compact manifold with nonempty or without boundary in Rn of dimension
k. Let f : M → R be continuous and compactly supported in α(U) where α : U → M

is a coordinate parametrisation. We define
∫
M
fdV =

∫
U
(f ◦ α)

√
det(DαTDα). Note

that this a priori improper integral is actually an ordinary Riemann integral (because
f ◦ α has compact support), we can assume U is bounded WLog, and the integral can
be taken over Int(U) (because the boundary, being possibly a subset of Hn has measure
zero anyway).
The key point is that this integral is well-defined, independent of the coordinate
parametrisation chosen: This follows from the change-of-variables formula and the
fact that we are eventually integrating over an open set anyway. Moreover, linearity
holds, i.e.,

∫
(af + bg) = a

∫
f + b

∫
g by the linearity of the usual integral.

Here is the general definition: Let M be a compact manifold with nonempty or with-
out boundary in Rn and f : M → R be a continuous function. Let ϕi be a (finite)
partition-of-unity subordinate to a cover by all coordinate parametrisations. Then∫
M
fdV :=

∑
i

∫
M
ϕifdV . When f = 1,

∫
M
1dV is called the surface area/volume of M .

1. If f has support in a coordinate patch, this definition coincides with the ear-
lier one:

∑
i

∫
M
ϕifdV =

∑
i

∫
Int(U)

(ϕif) ◦ α
√

det(DαTDα) =
∫
Int(U)

∑
i ϕi ◦ αf ◦

α
√

det(DαTDα) and we are done.

2. It is independent of the partition-of-unity: If ψj is another partition-of-unity sub-
ordinate to another cover, then

∑
j

∫
M
ψjfdV =

∑
j

∫
M

∑
i ϕi(ψjf)dV =

∑
j

∑
i

∫
M
ϕiψjfdV

(by linearity) and by linearity again, this equals
∑

i

∫
M

∑
j ϕiψjfdV =

∑
i

∫
M
ϕifdV .

Linearity of this general definition is also easy to prove.
Now of course this definition is impossible to work with practically speaking. Thank-
fully, it is not difficult to prove (using the fact that C1 maps take measure zero sets to
measure zero sets) that if you cover-upto-measure zero (measure zero on a manifold
simply means that it can be covered by countable many coordinate patches where it
has measure zero) a compact manifold (with or without boundary) by finitely many
coordinate patches, then the integral is simply the addition of the improper integrals
over each coordinate patch. As a consequence, we can calculate the surface area of a
sphere using the usual parametrisation (upto measure zero).
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3 A sketch of proof of Green’s theorem
A version of Green: Let Ω ⊂ R2 be a closed set, f : Ω → R a smooth function,
f = 0 is a regular level set, and f ≥ 0 is Ω. Suppose ∂Ω can be parametrised-
upto-measure zero by a single patch γ : (0, 1) → R2 such that ∇f × γ′ points in
the k̂ direction throughout γ(0, 1). Let P,Q : Ω → R be smooth functions. Then∫ 1

0
((P ◦ γ)γ′1 + (Q ◦ γ)γ′2)dt =

∫
Int(Ω)

(Qx − Py).

Proof. Cover the boundary by boundary coordinate patchesUi (of the form α−1(x, y) →
(−x,−f) (when fy > 0) or (y,−f) (when fx > 0) or (x,−f) (when fy < 0) or (−y,−f)
(when fx < 0). Note that these changes of variables have positive Jacobians) and the
interior by the usual patch V . Choose a partition-of-unity ρj subordinate to this cover.
By linearity, we can assume WLog that P,Q have supports in one of these coordinate
patches. If that patch is V , then the RHS is zero (because it is trivial to prove Green for
rectangles) and so is the LHS. If it is one of the Ui, then by change of variables, we can
reduce to a rectangle and be done. Now the fact that the integral can be calculated by
only one patch γ(0, 1) follows from the measure zero business. The key point is that
the direction of γ′ is the right one for the Green theorem over a rectangle.

4 Orientability of manifolds
In the above sketch of proof, it appears crucial that the integral be such that it changes
by the Jacobian upon change of variables and that we have successfully covered the
manifold-with-boundary by coordinate patches where the change of patch Jacobian
is positive. We generalise the latter property into a definition as follows. (The former
property will also have to be generalised to higher dimensions.)
Let g : A ⊂ Rk → B ⊂ Rk be a diffeo. It is said to be orientation-preserving if
det(Dg) > 0 everywhere. It is said to be orientation-reversing if det(Dg) < 0 every-
where. (Note that if A is connected, then only one of these possibilities occurs.)
Let M ⊂ Rn be a k-dimensional manifold with nonempty or without boundary.
Given two coordinate parametrisations αi : Ui → Vi, we say that they are orientation-
compatible with each other if the transition functionsαi◦α−1

j are orientation-preserving.
If k ≥ 2, and M can be covered with coordinate patches that are mutually orientation-
compatible with each other, then M is said to be orientable and the given collection of
compatible coordinate patches, augmented with all possible coordinate patches that
are compatible with the given ones, is said to be an orientation of M .
Given a parametrisation α, we can reverse its orientation: β = (−α1, α2, . . .). Now
α ◦ β−1(x1, x2, . . . , xk) = (−x1, . . . , xk), which is an orientation-reversing diffeo. Thus,
given an oriented manifold, we can reverse all the orientation-compatible parametri-
sations and produce another orientation called the opposite orientation.
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