
MA 200 - Lecture 16

1 Recap
1. Taylor’s theorem proof.

2. Reduced the proof of the second derivative test to a linear-algebraic lemma.

2 Taylor’s theorem and the second derivative test
Lemma 2.1. A real symmetric matrix is positive-definite if and only if all of its eigenvalues
are positive. (It is positive-semidefinite iff all of its eigenvalues are non-negative.) Moreover,
if H : U ⊂ Rn → Symn×n(R) is a continuous function and if H(a) is positive-definite, then
H(θ) is positive-definite for all θ ∈ Ba(ϵ) for some ϵ > 0.

Proof. IfA is symmetric, then by the spectral theorem, there exists an orthogonal matrix
O such that OTAO = D where D is the diagonal matrix consisting of eigenvalues of
A. As a consequence, if A is positive-definite (semidefinite), then vTAv > 0 (vTAv ≥ 0)
for all v ̸= 0. Hence (Ov)TA(Ov) > 0 (non-negative) for all v ̸= 0. Thus, vTDv > 0
(non-negative) and thus the eigenvalues are positive. Tracing the argument backwards
(indeed, O is invertible), we see that A is positive-definite if its eigenvalues are positive.
Now assume H(a) is positive-definite. Suppose no ϵ works, i.e., for every n there is a
θn ∈ Ba(1/n) such that vTnH(θn)vn ≤ 0 (and ∥vn∥ = 1). Then since the unit sphere is
compact, there exists a convergent subsequence vnk

converging to v on the unit sphere.
Moreover, θnk

→ a (why?) By continuity of the function H , vTH(a)v ≤ 0 but v ̸= 0.
Therefore we have a contradiction.

When does the Taylor series converge? For instance, 1 + x + x2 + . . . is the formal
Taylor series of 1

1−x
around x = 0. It certainly does not converge if x > 1 for instance.

When −1 < x < 1, it does converge to 1
1−x

(why?)
Here is a supremely strange example:
Consider f(x) = e−1/x2 when x > 0 and f(x) = 0 when x < 0. This function is
C∞ everywhere: Indeed, it is so away from x = 0 (compositions of smooth functions
are smooth). The claim is that it is smooth at the origin too (with all derivatives
equal to 0). Indeed, we claim that there exists a polynomial pk(t) of degree 3k such
that f (k)(x) = pk(1/x)e

−1/x2 when x > 0 and 0 when x ≤ 0: For k = 0 this is true.
Assume truth for 0, 1, 2, . . . , k − 1. Then f (k−1)(x) = pk−1(1/x)e

−1/x2 when x > 0

and 0 when x ≤ 0. So f (k)(0) = limh→0
pk−1(1/h)e

−1/h2

h
= 0 (by the squeeze rule and

the fact that g(x)e−x goes to 0 when g is a polynomial and x → ∞). When x > 0,

1



f (k)(x) =
(−1
x2 p

′
k−1(1/x) +

2
x3pk−1(x)

)
e−1/x2 .

This means that the Taylor series converges (it is identically zero!) but NOT to the
original function! (By the way, a variant of this function plays a role in physics: Look
up the KT-phase transition).
This function leads to a very interesting phenomenon: By reflecting, i.e., g(x) = f(−x),
and translating, i.e., h(x) = g(x − a) (where a > 0), and multiplying, i.e., k(x) =
h(x)f(x), we get a smooth function that is identically zero outside a compact set! This
leads to a definition:
Def: Let f : X → Rn be a continuous function and X be a metric space. Then the
closure of the set {x ∈ X|f(x) ̸= 0} is called the support of f . (It is a closed set by
definition.) f is said to have compact support if its support is compact. (Note that if X
is itself compact, every continuous function has compact support.)
In other words, we have found a smooth function on R having compact support! (It is
easy to come up with continuous compactly supported functions.) Not just that, we
can have some more fun: Note that by further translation (and scaling if necessary),
we can easily make sure that the support is any compact interval of our choice!
Now, upon integration, i.e., l(x) =

∫ x

−∞ k(t)dt, we obtain a smooth function that is a
constant on x ≤ 0 and x ≥ a. The same tricks as before allow us to produce a function
that has compact support on a compact interval of our choice and is identically 1 on a
sub-interval of our choice!

3 Integration in more than one-variable
Let Q ⊂ Rn be a closed rectangle [a1, b1]× [a2, b2] . . . [an, bn]. The volume of Q is defined
to be v(Q) = (b1 − a1)(b2 − a2) . . . (bn − an). The “width" is the maximum of bi − ai and
the intervals [ai, bi] are called the component intervals of Q.
Let f : Q → R be a bounded function. We want to define

∫
Q
fdV . To this end, roughly

speaking, we split Q into sub-rectangles where f is roughly a constant, and add up the
resulting numbers. We are led to some definitions:
Def: Given [a, b] ⊂ R, a partition P is a set of points a = t0 < t1 < . . . < tk = b. The
sub-intervals of the partition are [ti, ti+1]. Given a rectangle Q, a partition of Q is the
set P1 × P2 . . . Pn where Pi are partitions of [ai, bi]. The Cartesian products of the sub-
intervals yield several subrectangles of the partition. The maximum width of all these
subrectangles is called the mesh of the partition (so the smaller the mesh, the more the
number of sub-rectangles we are dividing into). A partition P ′ is said to be finer than
a partition P (or P ′ is said to be a refinement of P ) if P ′

i ⊂ Pi for every i. Given any two
partitions P = P1×P2× . . . and P ′ = P ′

1× . . ., the partition C = (P1∪P ′
1)× (P2∪P ′

2) . . .
is finer than P and P ′ and is called their common refinement.
Def: Let P be a partition of Q. For every subrectangle R, let mR(f) be the infimum
of f and MR(f) be the supremum of f over R. The lower Riemann sum L(P, f) =∑

R mR(f)v(R) and the upper Riemann sum U(P, f) =
∑

R MRv(R).
The key point is

Lemma 3.1. Let P be a partition of a rectangle Q and f : Q → R be a bounded function. If P ′

is a refinement of P , then L(f, P ) ≤ L(f, P ′) and U(f, P ′) ≤ U(f, P ).
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Proof. Let k be the number of points in P ′
1 − P1 plus those in P ′

2 − P2 plus so on. We
induct on k. In fact, we claim that k = 1 is enough. Indeed, if it is true for 1, 2 . . . , k− 1,
then replace P with the partition obtained by adding the k − 1 points and then apply
the k = 1 case.
For k = 1: Suppose the additional point b is in the ith component interval and in
the sub-interval [tij, tij+1]. Then the rectangles R = I1 . . . Ii−1 × [tij, tij+1] × Ii+1 . . . are
replaced by R1 = I1 . . . Ii−1 × [tij, a]× Ii+1 . . . union R2 = I1 . . . Ii−1 × [a, tij+1]× Ii+1 . . ..
The infimum increases if the size of the size is reduced (why?) and the supremum
decreases. Hence mR1 ,mR2 ≥ mR, MR1 ,MR2 ≤ MR and since v(R) = v(R1) + v(R2),
mRv(R) ≤ mR1v(R1) +mR2v(R2) and likewise for MR. Thus we are done.

Moreover, if P, P ′ are any two partitions, then L(f, P ) ≤ U(f, P ′) (and as a conse-
quence, the lower R.I is ≤ the upper one): Indeed, let C be their common refinement.
Then L(f, P ) ≤ L(f, C) ≤ U(f, C) ≤ U(f, P ′).
Def: Let f : Q → R be a bounded function and Q ⊂ Rn be a closed rectangle. Then
the lower Riemann integral

∫
Q
fdV is the supremum over all partitions of L(P, f) and

the upper Riemann integral
∫
Q
fdV is the infimum over all partitions of U(P, f). These

numbers always exist. f is said to be Riemann integrable with integral
∫
Q
fdV if these

numbers are equal and
∫
Q
fdV =

∫
Q
fdV =

∫
Q
fdV .

Example: A constant function is Riemann integrable with integral cv(Q). Indeed,
consider the trivial partition to conclude that the upper and lower Riemann sums and
hence the integrals are equal and that too to cv(Q). Now if P is any other partition,
since mR = MR = c, we see that v(Q) =

∑
R v(R) (an interesting identity).

Example: A piecewise-constant function on Q is a partition P0 together with constants
ci1i2...in for each open subrectangle and arbitrary values on the boundaries. Piecewise-
constant functions are R.I with integral

∑
I cIv(RI) (where I is a multi-index). Indeed,

given any partition P , consider the common refinement of P0, P . Consider an even
further refinement by adding points on both sides of the points in (P0)i with distance
ϵ > 0. Now the lower and upper Riemann sums are within Cϵ of each other and∑

I cIv(RI) (why?) Hence, the upper and lower R.I are within Cϵ of each other. Since
ϵ is arbitrary, we are done.
Non-example: The Dirichlet function f(x) = 1 when x is a rational and f(x) = 0 when
x is irrational is not R.I over [0, 1].

Theorem 1. Riemann’s criterion: A bounded function f : Q → R is R.I iff for every ϵ > 0,
there is a partition Pϵ such that U(Pϵ, f)− L(Pϵ, f) < ϵ.

The proof is exactly the same as in the 1−D case.
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