HW 5

1. Let $F(x, y, z): \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined as $F(x, y, z)=\left(x^{2}+y^{2}+z^{2}, x y z\right)$. Prove that there exists a neighbourhood of $(3,1)$ such that for every (α, β) in this neighbourhood, there exists (a, b, c) such that $F(a, b, c)=(\alpha, \beta)$.
2. Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ (where U is open) be a C^{1} function. Suppose $\nabla f(a) \neq 0$ and $f(a)=0$. Prove that there exists a neighbourhood $V \subset U$ of a such that the tangent plane at a does not intersect the portion of the level set $f(x)=0$ lying in this neighbourhood.
