HW 5

- 1. Let $F(x, y, z) : \mathbb{R}^3 \to \mathbb{R}^2$ be defined as $F(x, y, z) = (x^2 + y^2 + z^2, xyz)$. Prove that there exists a neighbourhood of (3, 1) such that for every (α, β) in this neighbourhood, there exists (a, b, c) such that $F(a, b, c) = (\alpha, \beta)$.
- 2. Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ (where U is open) be a C^1 function. Suppose $\nabla f(a) \neq 0$ and f(a) = 0. Prove that there exists a neighbourhood $V \subset U$ of a such that the tangent plane at a does not intersect the portion of the level set f(x) = 0 lying in this neighbourhood.