HW 6

1. Let $f, g_{1}, g_{2}, \ldots, g_{k}: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{1} functions (where U is open and $k<n$). Suppose f attains a global extremum at $a \in U$ subject to the constraints $g_{1}=g_{2}=$ $\ldots=g_{k}=0$. Assume that $\nabla g_{1}(a), \nabla g_{2}(a), \ldots, \nabla g_{k}(a)$ are linearly independent. Prove that $\nabla f(a)=\lambda_{1} \nabla g_{1}(a)+\lambda_{2} \nabla g_{2}(a)+\ldots$.
2. Prove that if $a, b \geq 0$ and $\frac{1}{p}+\frac{1}{q}=1$ ($p, q>0$ real numbers), then $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$ using Lagrange's multipliers.
