

MA 235 - Lecture 16

1 Recap

1. Regular value theorem
2. Sard's theorem
3. Smooth vector fields

2 Vector fields and the tangent bundle

Examples/Non-examples of smooth vector fields:

- Any collection of n smooth functions $X^i : \mathbb{R}^n \rightarrow \mathbb{R}$ gives a smooth vector field $X = X^i e_i$ on \mathbb{R}^n .
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi, 0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \leq \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \psi}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field spans $T_p M$ at every point.) Likewise, we can come up with n -smooth vectorfields on the n -torus that span $T_p M$ at every point.
- The hairy ball theorem implies that there is no smooth vector field on S^2 that is *nowhere* vanishing. In particular, we cannot come up with two smooth vector fields on S^2 that span $T_p S^2$ at every point.
- The vector field $X = 0$ is of course a smooth vector field on any manifold (with or without boundary). This is a trivial example.
- Actually, on every manifold (with or without boundary), we can come up with smooth non-trivial vector fields. Indeed, take any coordinate unit ball (B, x) (around an interior point). Take a bump function $\rho : M \rightarrow \mathbb{R}$ such that $\text{supp}(\rho) \subset B$ and $\rho = 1$ on the ball of radius half. Then $\rho \frac{\partial}{\partial x^1}$ is an example of a smooth vector field on M by extending it to be 0 outside B .

Let M be a smooth manifold (without boundary). Can TM be given the structure of a smooth manifold such that a smooth vector field X is an example of a smooth map from M to TM ? We can. The resulting smooth manifold TM is called the *tangent bundle* of M .

Consider the projection map $\pi : TM \rightarrow M$ given by $\pi(p, v) = p$. Indeed, cover M with a countable collection of coordinate charts (U_α, x_α^i) . For each such chart consider $\pi^{-1}(U_\alpha) = \bigcup_{p \in U_\alpha} T_p M = \bigcup_{p \in U_\alpha} T_p U_\alpha = \bigcup_{p \in \phi_\alpha(U_\alpha)} T_p \mathbb{R}^n$. This set is set-theoretically bijective to $U_\alpha \times \mathbb{R}^n$ by $T_\alpha(x, v) = (x, v^i \frac{\partial}{\partial x^i})$. We now take a countable basis \mathcal{B}_α of $U_\alpha \times \mathbb{R}^n$ and declare the collection $T_\alpha(\mathcal{B}_\alpha)$ over all α as a countable basis for a topology for $T_p M$. (So in particular, a smooth vector field is a continuous function from M to TM (why?).) This topology is not necessarily homeomorphic to $M \times \mathbb{R}^n$. (Only locally, this sort of a statement is true.)

TM is Hausdorff with this topology (why?) Note that the map $T_\alpha^{-1} : \pi^{-1}(U_\alpha) \rightarrow U_\alpha \times \mathbb{R}^n \subset \mathbb{R}^{2n}$ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension $2n$ with these charts. In fact, these charts are smoothly compatible: On $\pi^{-1}(U_\alpha \cap U_\beta)$, the transition map is $(x_\alpha, \vec{v}_\alpha) \rightarrow (x_\beta, v_\beta^i = \frac{\partial x_\beta^i}{\partial x_\alpha^j} v_\alpha^j)$ which is smooth. Its inverse is also smooth. Thus, considering the smooth structure induced by this countable basis of smooth charts, we can make TM into a smooth manifold.

A smooth vector field is a vector field that is also a smooth map from M to TM (why?) (HW) If M is a smooth manifold-with-boundary, TM can be made into a smooth manifold-with-boundary such that smooth vector fields are vector fields that define smooth maps from M to TM .

3 Vector bundles

The tangent bundle TM is a special kind of a manifold. It parametrises “a family of smoothly varying tangent spaces”. A natural question: Can we parametrise a family of smoothly varying duals of tangent spaces? If $M \subset \mathbb{R}^N$ is a submanifold (or even more generally, $M \subset N$), then another natural question is “Can we parametrise the family of vector spaces that are orthogonal to the tangent spaces”? (We might need such a notion because it might help us answer the question of when $M \subset \mathbb{R}^N$ is a regular level set.)

More generally, what does it mean to have a family of smoothly varying vector spaces?

A trivial family parametrised by M is simply $M \times V$. But even in the case of TM , the most natural topology on TM did *not* make it homeomorphic to $M \times \mathbb{R}^n$. The key point conveyed by TM is the notion of ‘local triviality’, i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces. If there is no link between the vector spaces at all, then in what sense are they “smoothly varying”? Indeed in the case of TM , locally, we had smoothly varying bases for $T_p M$. Using this local smoothly varying basis, we could find a nice bijection between $\pi^{-1}(U_\alpha)$ and $U_\alpha \times \mathbb{R}^n$.

So whatever a “vector bundle” is, it better be a family of vector spaces that is locally trivial, i.e., there must be local smoothly varying bases.

Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said

to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi : V \rightarrow M$, $\pi^{-1}(p) = V_p$ is a real vector space of dimension r , and local triviality holds, i.e., for every point $p \in M$, there is a neighbourhood U such that there is a smooth diffeomorphism $T : \pi^{-1}(U) \rightarrow U \times \mathbb{R}^r$ such that it commutes with the projection maps and $T : V_q \rightarrow \mathbb{R}^r$ is a linear isomorphism. Likewise, one can define a smooth complex vector bundle (and continuous real/complex vector bundles over topological manifolds too). The V_p 's are called "fibres". Set theoretically, $V = \bigcup_{p \in M} V_p$. The map T is called a local trivialisation.

The part about local triviality implies the following: There is a smooth collection of functions $s_1, \dots, s_r : U \rightarrow V$ such that $s_i(q) \in V_q \forall q \in U$ and $s_1(q), \dots, s_r(q)$ forms a basis for V_q (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_i = T^{-1}(e_i)$.

This motivates the following definition: Let V be a smooth vector bundle over a smooth manifold M . A smooth map $s : M \rightarrow V$ such that $s(p) \in V_p$, i.e., $\pi(s(p)) = p$ is called a smooth section. Smooth vector fields are smooth sections of TM .

What we said above is that a local trivialisation gives a collection of smooth sections s_i such that $s_i(p)$ is a basis of V_p . Conversely, given such a collection of smooth sections, the map $L : U \times \mathbb{R}^r \rightarrow V$ given by $L(p, \vec{v}) = v^i s_i(p)$ is a smooth 1–1 map such that L^{-1} is a local trivialisation (HW).

Examples/Non-examples:

- A trivial bundle $M \times \mathbb{R}^r$.
- TM is a vector bundle of rank n over M .
- Möbius bundle: Consider $L = [0, 1] \times \mathbb{R} / \{(0, v) \sim (1, -v)\}$ and $M = [0, 1] / \{0 \sim 1\}$. Note that $f : M \rightarrow S^1$ given by $f(t) = (\cos(2\pi t), \sin(2\pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M into a smooth manifold diffeo to S^1 . It turns out that (proof omitted) L can be made into a smooth vector bundle of rank-1 (such things are called line bundles) over $M = S^1$. One can prove (using the intermediate value theorem) that any smooth section of L over M must vanish somewhere.
- S^2 cannot be a vector bundle over any manifold (why?)