HW 3 (Quiz in week 4)

- 1. Let f(t) be real-analytic at $g(t_0)$ and g(t) at t_0 . Then prove that h(t) = f(g(t)) is real-analytic at t_0 .
- 2. If a real-valued function f defined in a neighbourhood of t_0 is analytic is t_0 , then prove that
 - (a) f is smooth in a neighbourhood of t_0 , and
 - (b) there exist positive δ, M such that for $t \in (t_0 \delta, t_0 + \delta), |f^{(k)}(t)| \leq M \frac{k!}{\delta^k}$ for $k = 0, 1, 2 \dots$