1 Recap

1. Motivated the case for regular singular points (Bessel's equation $y'' + y'/t + y(1 - \nu^2 s/t^2) = 0$ and Legendre's equation).

2 Real-analytic functions

$$a_n f(m+n) + \sum_{k=0}^{n-1} a_k ((m+k)p_{n-k} + q_{n-k}) = 0,$$
(1)

where $f(m + n) = (m + n)(m + n - 1) + (m + n)p_0 + q_0 \forall n \ge 0$. For n = 0 we see that f(m) = 0. This equation is called the indicial equation. It can have real distinct roots, complex distinct roots, or a real (or complex) repeated root. Suppose it has two complex roots m_1, m_2 . Then there are two possibilities:

- 1. $m_1 m_2$ is not an integer: $f(m+n) \neq 0 \forall n > 0$. In fact, $|f(m+n)| \ge Cn^2 \forall n \ge 1$.
- 2. $m_1 = m_2 + n$ where *n* is a non-negative integer: In this case f(m + n) = 0 at some point and hence we cannot determine all the coefficients for $m = m_2$. So we get only one formal solution y_1 and must try for a different solution using $t^{m_2} \sum b_n t^n + C \ln(t)y_1$.

It turns out (Frobenius' theorem) that $\sum a_n t^n$ and $\sum b_n t^n$ converge on (-R, R) if $\sum p_n t^n$ and $\sum q_n t^n$ do. Here is the proof: First fix r < R. We see that $|p_k| + |q_k| \leq \frac{C}{r^k}$.

1. $f(m+n) \neq 0$ (In particular, if $m_1 - m_2$ is not a non-negative integer):

$$|a_n| \le \frac{C}{n^2} \sum_{k=0}^{n-1} |a_k| \frac{1}{r^{n-k}} \left((m+k) + 1 \right)$$

$$\Rightarrow |a_n| \le \frac{C}{n} \sum_{k=0}^{n-1} |a_k| \frac{1}{r^{n-k}}.$$
 (2)

Again, we define $u_n = |a_n|$ with $u_0 = |a_0|$ satisfying

$$u_n = \frac{C}{n} \sum_{k=0}^{n-1} \frac{u_k}{r^{n-k}}.$$
(3)

We see that $u_n \ge |a_n|$ by induction. Thus $u_n = u_{n-1}((n-1)/nr + C/n)$. Thus $\lim \frac{u_n}{u_{n-1}} = \frac{1}{r}$. Thus $\sum u_n(r-\epsilon)^n$ converges and by the Weierstrass-*M* test, $\sum a_n t^n$ converges uniformly on $[r - \epsilon, r + \epsilon]$ and since r, ϵ are arbitrary, we are done. We claim that if $m_1 - m_2$ is not an integer, then these two solutions are linearly independent (HW).

2. $m_1 = m_2 + n_0$ where n_0 is a non-negative integer: The above argument works for m_1 . Now we try $y_2 = t^{m_2} \sum b_n t^n + C \ln(t) y_1$. Substituting into the ODE we get (after simplification using the fact that y_1 is a solution)

$$(t^{m_2}\sum b_n t^n)'' + P(t)(t^{m_2}\sum b_n t^n)' + Q(t)(t^{m_2}\sum b_n t^n) - \frac{Cy_1}{t^2} + \frac{2Cy_1'}{t} + \frac{CPy_1}{t} = 0.$$
(4)