
1 Recap
1. Proved Frobenius in the case where f(m+ n) 6= 0.

2 Real-analytic functions

anf(m+ n) +
n−1∑
k=0

ak((m+ k)pn−k + qn−k) = 0, (1)

where f(m+ n) = (m+ n)(m+ n− 1) + (m+ n)p0 + q0 ∀ n ≥ 0. For n = 0 we see that
f(m) = 0.

1. m1 = m2 + n0 where n0 ≥ 1: The above argument works for m1. For bn, we see
that
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Thus defining ak = 0 = bk for negative k,
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For n = n0 we see that
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and hencewe can solve forC (because inductively, we can solve for bk up to n0−1).
(By the way, bn0 being a free variable does not give us any more freedom because
bn0t

n0tm2 can be absorbed into a0tm1 and hence bn0 = 0Wlog.) Now f(m+ n) 6= 0
for n > n0. Thus we can solve for all the other bk. We now have to prove that∑

n bnt
n converges absolutely and uniformly on [−(r− ε), r+ ε]where r < R and

ε > 0 are arbitrary. Note that |ak| ≤ C
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for all k ≥ 0. Hence for all sufficiently
large n (≥ N ) we see that
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As usual, we define uN = |bN | > 0 (without loss of generality) and un to satisfy
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Note that un ≥ |bn| > 0 inductively and that un ≥ Cn
rn
∀ n ≥ N + 1. Now we see

that
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Hence we are done.

2. m1 = m2: In this case we try y2 = ln(t)y1 + tm
∑∞

n=1 bnt
n. The calculations are

similar and left as an exercise.
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