1 Recap

- 1. Examples of things that can go wrong in general.
- 2. Locally Lipschitz.
- 3. Uniqueness and uniformly locally Lipschitz.
- 4. Strategy for proving existence.

2 General existence and uniqueness theory

How can we hope to prove convergence? Well, we can try to look $y_{n+1} - y_n$ and if that decays quickly as $n \to \infty$, then y_n presumably converges. Thus, $y_{n+1}(t) - y_n(t) = \int_{t_0}^t (f(y_{n+1}(s), s) - f(y_n(s), s)) ds$. This seems to be the right place to apply Gronwall and so on, provided we assume Lipschitzness. Picard's theorem:

Theorem 1. Let $D \subset \mathbb{R}^n$ be a domain and let $f : D \to \mathbb{R}^{n+1}$ be continuous (jointly) on D and Lipschitz in y on D with Lipschitz constant α . Let $R = \overline{B}_b(y_0) \times [t_0 - a, t_0 + a] \subset D$. Let $M = \max_R |f|$ and $h = \min(a, \frac{b}{M}, \frac{1}{2\alpha})$. In the initial-value-problem (IVP) y' = f(y, t) with $y(t_0) = y_0$ has a unique solution on $[t_0 - h, t_0 + h]$.

Proof. Uniqueness was proven earlier. We shall prove existence by considering

$$y_{n+1}(t) = y_0 + \int_{t_0}^t f(y_n(s), s) ds$$
(1)

with $y_0(t) = y_0$. As mentioned earlier,

$$\|y_{n+1}(t) - y_n(t)\| \le \alpha \int_{t_0}^t \|y_n - y_{n-1}\| ds,$$
(2)

provided $(y_n(s), s), (y_{n+1}(s), s) \in D$ for all s lying between t_0 and t. Suppose S_n is the set of all $t \in [t_0 - a, t_0 + a]$ such that $(y_n(t), t) \in \overline{B}_b(y_0) \times [t_0 - h, t_0 + h]$. Note that S_n is not empty. We claim that $[t_0 - h, t_0 + h] \subset S_n$. We shall prove this claim by induction on n. Clearly it is true for n = 0. Suppose it is true until n - 1. Then $y_n(t) - y(t_0) = \int_{t_0}^t f(y_{n-1}(s), s) ds$. Thus $||y_n(t) - y_0|| \le Mh \le b$ if $t \in [t_0 - h, t_0 + h] \subset S_{n-1}$. Thus it is true for n.

As a consequence on $[t_0 - h, t_0 + h]$,

$$\|y_{n+1} - y_n\| \le \alpha \int_{t_0}^t \|y_n - y_{n-1}\| ds$$

$$\Rightarrow \|y_{n+1} - y_n\|_{C^0[t_0 - h, t_0 + h]} \le \alpha h \|y_n - y_{n-1}\|_{C^0[t_0 - h, t_0 + h]}$$

$$\le \frac{1}{2} \|y_n - y_{n-1}\|_{C^0[t_0 - h, t_0 + h]} \le \frac{1}{2^n} \|y_1 - y_0\|_{C^0[t_0 - h, t_0 + h]}.$$
(3)

Since $y_n = y_0 + (y_1 - y_0) + (y_2 - y_1) \dots$, we see that by the Weierstrass *M*-test, this series converges uniformly to some limit *y* which is a continuous function. Since

f is continuous, $\int_{t_0}^t f(y_n(s), s) ds$ converges to $\int_{t_0}^t f(y(s), s) ds$ by uniform convergence (why?). Thus the limiting *y* satisfies $y = y_0 + \int_{t_0}^t f(y(s), s) ds$. By the fundamental theorem of calculus, *y* is differentiable and satisfies the IVP.