
1 Recap
1. Picard’s theorem (first version).

2 General existence and uniqueness theory
Theorem 1. In the above theorem, h can be chosen to be min
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Since the series
∑
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converges (why?), by the Weierstrass M -test, we are done

as above (why?)

We now wish to characterise the maximal interval of existence. Here is a version
of such a theorem (we are not stating it in the greatest generality possible but the
technique of proof is generally applicable).

Theorem 2. Let f : Rn × R → Rn be locally Lipschitz. There exists a unique differentiable
solution y : (h1, h2) → Rn to y′ = f(y(t), t) with y(t0) = y0 where h1 < t0 < h2 are
extended real numbers such that (h1, h2) is the maximal interval of existence (what does this
mean?). Moreover, if h2 is finite, there exists a sequence tn → h2 (with tn ∈ (h1, h2)) such that
∥y(tn)∥ → ∞ and likewise for h1.

In other words, as long as y stays bounded, we can “continue" further. Equivalently,
being unbounded is the only thing that can go wrong (this is in stark contrast to partial
differential equations where higher order problems can play a role).

Proof. There surely is a solution on [t0 − h, t0 + h] for some h > 0. Define h2 as the
supremum of all a2 such that there is a solution on [t0 − h, a2]. By uniqueness there
is a unique solution on [t0 − h, h2). Likewise we can define h1 and come up with the
maximal interval of existence. Suppose h2 is finite and ∥y(t)∥ ≤ C on [t0, h2). (Why is
this the negation of the hypothesis in the theorem?) Then since y′ = f(y(t), t), we see
that ∥y′∥ ≤ C on [t0, h2)- why? (note that the constant C can vary from inequality to
inequality) As a consequence, ∥y(s)− y(t)∥ ≤ |t− s|C and hence y(h2) := limt→h−

2
y(t)

exists (why?). Because of uniform convergence, from y(t) = y0+
∫ t

t0
f(y, s)dswe see that

y(h2) = y0 +
∫ h2

t0
f(y, s)ds. By the fundamental theorem of calculus, y is differentiable

at h2 and satisfies the ODE there. Thus we can extend the solution further using the
existence theorem and arrive at a contradiction for maximality.



We can apply this result to prove that non-autonomous linear systems y′ = A(t)y+
B(t) with y(t0) = y0 have unique solutions on (−∞,∞). Indeed, f(y, t) = A(t)y+B(t).
Now ∥f(y1, t)−f(y2, t)∥ ≤ ∥A(t)∥∥y1−y2∥ and hence it is locally Lipschitz. Thus if there
is a solution, it is unique. Now by the existence theorem, the solution exists on some
maximal interval (h1, h2). Note that if either of them (WLog h2) is finite, then since
∥y(t)∥ ≤ C +

∫ t

t0
(∥A(s)∥∥y(s)∥+ ∥B(s)∥)ds ≤ C(1 +

∫ t

t0
∥y(s)∥) on [t0, h2), by Gronwall,

y is bounded and hence by the previous theorem, we have a contradiction.
We can actually prove a more general existence theorem due to Peano.

Theorem 3. Let f be continuous on a rectangle R = B̄b(y0) × [t0 − a, t0 + a]. Then there
exists a solution (possibly non-unique) to y′ = f(y, t) with y(t0) = y0 on [t0 − h, t0 + h] where
h = min(a, b/M) where M = maxR |f |.

There are two proofs using approximations.

1. Using actual solutions to an approximation of the problem: Using the Stone-
Weierstrass theorem (Let X be compact and Hausdorff. Let A be a subalgebra of
C(X,R) which contains a non-zero constant function. Then A is dense in C(X,R)
iff it separates points), we see that there is a sequence of smooth functions fn → f
on R uniformly.

2. Using approximate solutions to the original problem
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