
1 Recap
1. Picard’s theorem (second version).

2. Maximal interval of existence.

3. The Stone-Weierstrass theorem (recall) and its use to create an approximation to
an IVP to prove Peano’s theorem.

2 General existence and uniqueness theory
Theorem 1. Let f be continuous on a rectangle R = B̄b(y0) × [t0 − a, t0 + a]. Then there
exists a solution (possibly non-unique) to y′ = f(y, t) with y(t0) = y0 on [t0 − h, t0 + h] where
h = min(a, b/M) where M = maxR |f |.

There are two proofs using approximations.

1. Using actual solutions to an approximation of the problem: Using the Stone-
Weierstrass theorem (Let X be compact and Hausdorff. Let A be a subalgebra of
C(X,R) which contains a non-zero constant function. Then A is dense in C(X,R)
iff it separates points), we see that there is a sequence of smooth functions fn → f
on R uniformly. (Another possibility is convolution with a nice function but that
approximates only on a slightly smaller domain.) Now solve y′n = fn(yn, t) with
yn(t0) = y0 and (yn(t), t) ∈ B̄b(y0)× [t0−hn, t0+hn] where hn = min(a, b/Mn) (this
property follows from the proof). Note that ∥y′n∥ ≤ Mn. Thus ∥yn(t) − yn(s)∥ ≤
Mn∥t−s∥ for all t, s ∈ [t0−hn, t0+hn]. Given ϵ > 0, we can choosen large enough so
that |hn−h| < ϵ. Thus for all suchn, yn is uniformly equicontinuous and uniformly
bounded on Iϵ = [t0 − h+ ϵ, t0 + h− ϵ]. Let ρϵ be a smooth function with compact
support in Iϵ which is identity on I2ϵ. Thus yn,ϵ = ynρϵ is defined on I0 and is
still uniformly equicontinuous and uniformly bounded on I0. Choose a sequence
ϵk → 0. The corresponding ynϵk

,ϵk have a uniformly convergent subsequence (by
Arzela-Ascoli) that converges uniformly to a continuous function y on I0. This
function is the desired solution (why?)

2. Using approximate solutions to the original problem: The idea is to use the Euler
method to produce approximate solutions and hope that they converge (using
Arzela-Ascoli again). Here is the precise definition of an ϵ-approximate solution:
Let f be defined and continuous on a domain D ⊂ Rn+1. An ϵ-approximate
solution on I = [t0 − a, t0 + a] is a function y : I → Rn such that

(a) (t, y(t)) ∈ D for all t ∈ I .
(b) y is C1 on I except possibly for a finite set S ⊂ I (but it has left and right

derivatives on S).
(c) ∥y′ − f(y, t)∥ ≤ ϵ on I ∩ Sc.

We produce ϵ-approximate solutions on [t0−h, t0+h] for h = min(a, b/M) where
f is continuous on R = B̄b(y0) × [t0 − a, t0 + a] and M = maxR f : We shall



construct it on [t0, t0+h] (and similar construction works on the other side). Divide
the interval into subintervals and on each subinterval [tk, tk+1] we give a linear
approximation using the Euler method, i.e., Solve z′ = f(zk−1, tk−1), z(tk−1) =
zk−1 to get zk = z(tk) = zk−1 + f(zk−1, tk−1)(tk − tk−1). But we need to choose
the subintervals carefully so that these piecewise linear solutions all lie in R.
Firstly, since f is uniformly continuous on R, ∥f(y, t) − f(ỹ, t̃)∥ < ϵ whenever
∥t− t̃∥+ ∥y− ỹ∥ ≤ δ. We shall divide the interval into equal parts of size at most
δ1 which we shall choose later (it will turn out that δ1 = min(δ, δ/M) works). For
any t ∈ [ti−1, ti], t̃ ∈ [tj−1, tj] (where i ≥ j),

∥y(t)− y(t̃)∥ ≤ ∥y(t)− y(tj) + y(tj) + . . .+ y(ti−1)− y(t̃)∥
≤ M |t− tj|+ . . . ≤ M |t− t̃|. (1)

Hence if t̃ = t0, ∥y(t) − y(t0)∥ ≤ Mh ≤ b. Thus we can easily show that by the
choice of δ1 = min(δ, δ/M), y is an ϵ-approximate solution.

To be continued.....

2


	Recap
	General existence and uniqueness theory
	A little bit about numerical methods

