1 Recap

1. Picard’s theorem (second version).
2. Maximal interval of existence.

3. The Stone-Weierstrass theorem (recall) and its use to create an approximation to
an IVP to prove Peano’s theorem.

2 General existence and uniqueness theory

Theorem 1. Let f be continuous on a rectangle R = By(yo) X [to — a,to + a]. Then there
exists a solution (possibly non-unique) toy' = f(y,t) with y(to) = yo on [to — h, to + h] where
h = min(a, b/M) where M = maxg | f|.

There are two proofs using approximations.

1. Using actual solutions to an approximation of the problem: Using the Stone-
Weierstrass theorem (Let X be compact and Hausdorff. Let A be a subalgebra of
C(X,R) which contains a non-zero constant function. Then A is dense in C(X, R)
iff it separates points), we see that there is a sequence of smooth functions f,, — f
on R uniformly. (Another possibility is convolution with a nice function but that
approximates only on a slightly smaller domain.) Now solve v/, = f,.(y,,t) with
Yn(to) = yo and (y.(t),t) € By(yo) X [to — hn, to + hy,] where h,, = min(a, b/M,,) (this
property follows from the proof). Note that ||y, || < M,. Thus ||y, (t) — ya(s)| <
M, ||t—s| forallt, s € [to—hy, to+h,]. Givene > 0, we can choose n large enough so
that|h,—h| < e. Thus for all such n, y,, is uniformly equicontinuous and uniformly
bounded on I, = [ty — h +€,ty + h — €]. Let p. be a smooth function with compact
support in I, which is identity on I5.. Thus y, . = y,p. is defined on I, and is
still uniformly equicontinuous and uniformly bounded on /. Choose a sequence
¢ — 0. The corresponding y,,, ., have a uniformly convergent subsequence (by
Arzela-Ascoli) that converges uniformly to a continuous function y on /. This
function is the desired solution (why?)

2. Using approximate solutions to the original problem: The idea is to use the Euler
method to produce approximate solutions and hope that they converge (using
Arzela-Ascoli again). Here is the precise definition of an e-approximate solution:
Let f be defined and continuous on a domain D C R""!. An e-approximate
solution on I = [ty — a,ty + a] is a function y : I — R" such that

(@) (t,y(t)) € Dforallt € I.

(b) y is C' on I except possibly for a finite set S C I (but it has left and right
derivatives on 95).

© |y = fy. D[ <eonlnsSe

We produce e-approximate solutions on [ty — h, to + h] for h = min(a, b/M) where
f is continuous on R = By(yy) X [to — a,tp + a] and M = maxg f: We shall



constructiton [ty, to+h] (and similar construction works on the other side). Divide
the interval into subintervals and on each subinterval [t;, ;1] we give a linear
approximation using the Euler method, i.e., Solve 2’ = f(z_1,tk—1), 2(ts—1) =
2k—1 to get 2z, = 2(ty) = 2k—1 + f(2k—1,tk—1)(tx — tx—1). But we need to choose
the subintervals carefully so that these piecewise linear solutions all lie in R.
Firstly, since f is uniformly continuous on R, ||f(y,t) — f(§,1)|| < ¢ whenever
It — || + |ly — 7|l < 6. We shall divide the interval into equal parts of size at most
91 which we shall choose later (it will turn out that 6; = min(d, 6/M) works). For
any t € [t;_1,t;],1 € [tj_1,t;] (Wherei > j),

ly(®) =y < ly(t) —y(t;) +y(t;) + - .+ y(tiza) — y (@)l
<Mt —tj|+... < M|t —1]. (1)

Hence if £ = ¢y, ||y(t) — y(to)|| < Mh < b. Thus we can easily show that by the
choice of §; = min(d, §/M), y is an e-approximate solution.

To be continued.....
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