
1 Recap
1. First proof of Peano.

2. Construction of approximate solutions.

2 General existence and uniqueness theory
Theorem 1. Let f be continuous on a rectangle R = B̄b(y0) × [t0 − a, t0 + a]. Then there
exists a solution (possibly non-unique) to y′ = f(y, t) with y(t0) = y0 on [t0 − h, t0 + h] where
h = min(a, b/M) where M = maxR |f |.

We have produced approximate solutions. Now choose ϵn = 1
n
. The correspond-

ing approximate solutions yn are uniformly bounded and uniformly equicontinuous
(why?) and hence by Arzela-Ascoli, a subsequence (that we shall abuse notation and
continue to denote as) yn converges uniformly to a continuous function y. Uniform
convergence now implies that y is a solution to the IVP. (Why?)

The next order of business to see how the solution depends on initial data as well as
on other parameters that may occur in the differential equation (like physical constants
for instance).

Theorem 2. Let R be a “rectangle" as in Peano’s theorem. Let f, f̃ be continuous on R, and
uniformly Lipschitz in y with constantsα, α̃. Let y, ỹ be the solutions of y′ = f(y, t), y(t0) = y0,
and ỹ′ = f̃(ỹ, t), ỹ(t̃0) = ỹ0 in some closed interval I (containing t0, t̃0 and contained in R) of
length |I|. Then

max
I

∥y(t)− ỹ(t)∥ ≤ emin(α,α̃)|I|
(
∥y0 − ỹ0∥+ |I|max

R
∥f − f̃∥+max(∥f∥maxR , ∥f̃∥maxR)|t0 − t̃0|

)
(1)

Proof.

y − ỹ = y(t0)− ỹ(t0) +

∫ t

t0

(f(y(s), s)− f̃(ỹ(s), s))ds

= y(t0)− ỹ(t̃0) + ỹ(t̃0)− ỹ(t0) +

∫ t

t0

(f(y(s), s)− f̃(ỹ(s), s))ds

⇒ ∥y − ỹ∥ ≤ ∥y(t0)− ỹ(t̃0)∥+ ∥ỹ(t̃0)− ỹ(t0)∥+
∫ t

t0

∥f(y(s), s)− f̃(ỹ(s), s)∥ds

≤ ∥y0 − ỹ0∥+max
I

∥ỹ′∥|t0 − t̃0|+
∫ t

t0

∥f(y(s), s)− f̃(ỹ(s), s)∥ds

≤ ∥y0 − ỹ0∥+max
R

∥f̃∥|t0 − t̃0|+
∫ t

t0

∥f(y(s), s)− f̃(y(s), s)∥ds+
∫ t

t0

∥f̃(y(s), s)− f̃(ỹ(s), s)∥ds

≤ ∥y0 − ỹ0∥+max
R

∥f̃∥|t0 − t̃0|+ |I|max
R

∥f − f̃∥+ α̃

∫ t

t0

∥y − ỹ∥ds. (2)



Thus by Gronwall

∥y − ỹ∥ ≤ eα̃|I|

(
∥y0 − ỹ0∥+max

R
∥f̃∥|t0 − t̃0|+ |I|max

R
∥f − f̃∥

)
(3)

Interchanging the roles of y, ỹ, we are done.

As a consequence, the solution depends continuously on the initial data and pa-
rameters involved. We can prove more. In fact, we can prove that if f is smooth, so is y.
The rough idea is (for proving differentiability) to first pretend differentiability holds,
deduce the ODE for the derivative, write an ODE for the difference quotient, subtract
these two ODE and use the Gronwall inequality to deduce that indeed the difference
quotient converges to the (hypothetical) derivative.
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