
1 Recap
1. Fredholm’s alternative.

2. Sturm-Liouville theorem statement:

Theorem 1. The eigenvalues of the regular Sturm-Liouville problem (with α3 = β3 = 0)
is an infinite sequence λ0 < λ1 . . . converging to ∞. The eigenfunction un corresponding
to λn is unique upto a constant factor and has exactly n zeroes in (a, b).

3. Proof of uniqueness.

2 Sturm-Liouville theory
Prior to studying the oscillations and boundary values, we prove the following basic
result: Any non-trivial solution u can have at most finitely many zeroes in [a, b]. Indeed,
suppose not. Consider ξn → ξ ∈ [a, b]. By continuity, u(ξ) = 0. Now 0 = u(ξ+ξn−ξ)−u(ξ)

ξn−ξ
.

Thus u′(ξ) = 0 and by uniqueness, u is identically 0.
We now introduce an important tool to study oscillations and boundary values.

Note that the boundary conditions are such that it is enough to prescribe u(b)
u′(b)

on the
boundary (or perhaps u′(b) = 0). Motivated by this observation, we introduce the
Prüfer substitution: r =

√
u2 + p2u′2, cos(θ) = Pu′

r
, sin(θ) = u

r
. Since either u or u′ is

non-zero for a non-trivial solution, r is well-defined and is C1. On the other hand,
θ(t) : [a, b] → R is more delicate. If you know covering maps, then you simply choose
an initial θ0 and consider the lift of the map to the universal cover. It is a unique
continuous map which is actually C1 because of the way the lift is constructed. If you
don’t know covering maps, the basic idea is as follows. Firstly, choose some θ0 for t = a.
Now one can surely locally uniquely find θ(t) for some short period of time (why?)
which is continuous (in fact C1). Now cover the compact interval [a, b] with finitely
many such open sets to determine θ(t). Uniqueness follows (why?)

By differentiation (how?), we can prove that

θ′ = q sin2 θ +
1

p
cos2(θ) = F (t, θ),

r′ =
1

2

(
1

p
− q

)
r sin(2θ). (1)

Once θ is known,

r = r(a) exp

(
1

2

∫ t

a

(
1

p(s)
− q(s)

)
sin(2θ(s))ds

)
.

The boundary conditions for the SL problem only specify boundary conditions for θ.
Not for r. So given a solution of the SL BVP, we get a family of solutions of the new
system (where r(a) is arbitrary). Given a solution of the new system (with the right
boundary conditions for θ), we get a solution of the SL BVP (why?). Note that changing
r(a) only scales u by a constant factor. Hence the zeroes of u can be located by studying



θ.
Note that F is Lipschitz uniformly in θ and hence we obtain a unique solution for θ
given the initial θ(a) = γ for a short period of time.
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