1 Recap

- 1. Proved that any solution to SL has only finitely many zeroes.
- 2. Defined the Prüfer substitution (using path lifting) and derived ODE for θ , r. The ODE for r was incorrect. The point however is that the boundary values for SL correspond to boundary values for θ . Proved that there exists a unique solution for some short period of time.

2 Sturm-Liouville theory

$$\theta' = (\lambda \rho - q) \sin^2 \theta + \frac{1}{p} \cos^2(\theta) = F(t, \theta),$$

$$r' = \frac{1}{2} \left(\frac{1}{p} - (\lambda \rho - q) \right) r \sin(2\theta). \tag{1}$$

$$r = r(a) \exp\left(\frac{1}{2} \int_a^t \left(\frac{1}{p(s)} - (\lambda \rho - q)(s) \right) \sin(2\theta(s)) ds \right).$$

Note that changing r(a) only scales u by a constant factor. Hence the zeroes of u can be located by studying θ .

Since the right-hand-side is bounded, θ' is bounded and hence θ stays bounded in the maximal interval. Thus the maximal interval is [a,b].

Zeroethly, note the following observations.

- 1. If θ is a solution, then so is $-\theta$ (with the same eigenvalue). Hence, $\theta(a)$ can be assumed to be ≥ 0 . Moreover, by subtracting enough multiples of π , $\theta(a) \in [0, \pi)$.
- 2. To find zeroes, simply find those values of t for which $\theta(t) = n\pi$.
- 3. Let $n \ge 0$. If there is a t_n so that $\theta(t_n) = n\pi$, then $\theta'(t_n) > 0$ and hence $\theta(t) > n\pi$ for $t > t_n$ and sufficiently close to t_n . In fact, if there is a $t > t_n$ such that $\theta(t) = n\pi$, then θ' at that point is ≤ 0 which is a contradiction. Thus, $\theta > 0$ on [a, b].

The point is the following oscillation theorem.

Theorem 1. Let $\theta(t,\lambda)$ be a solution of the above ODE with $\theta(a,\lambda) = \gamma \in [0,\pi)$. Then θ is continuous and it is strictly increasing in λ . Moreover, $\lim_{\lambda \to \infty} \theta(t,\lambda) = \infty$ and $\lim_{\lambda \to -\infty} \theta(t,\lambda) = 0$ for any $t \in (a,b]$.

Given this theorem, let us prove the main theorem of SL: The boundary condition on b can be stated as $\theta(b,\lambda)=\delta+n\pi$ for $n=0,1,\ldots$ provided δ satisfies $\beta_1\sin(\delta)+\beta_2\frac{\cos(\delta)}{p(b)}=0$. There is of course a unique $\delta\in(0,\pi]$ satisfying it. For this value of δ , by the theorem above and the intermediate value theorem, there is a unique λ such that $\delta=\theta(b,\lambda)$. Call this λ_0 . (Note that u_0 does not vanish on (a,b).) Likewise, we can produce λ_1,\ldots which form an increasing sequence. Since $\delta_n\to\infty$, so does λ_n . Why does the statement about zeroes follow?

Now we shall prove the oscillation theorem. We first prove that θ is strictly increasing in λ . Note that $\theta' = (\lambda \rho - q) \sin^2(\theta) + \frac{\cos^2(\theta)}{p}$. Now since the right-hand-side is C^1 in λ , $\theta(t,\lambda)$ is differentiable with respect to λ and the derivative is (jointly) continuous (and $\theta(t,\lambda)$ is continuous jointly). We differentiate the equation.

$$\left(\frac{\partial\theta}{\partial\lambda}\right)' = \rho \sin^2(\theta) + (\lambda\rho - q)\sin(2\theta)\frac{\partial\theta}{\partial\lambda} - \frac{\sin(2\theta)}{p}\frac{\partial\theta}{\partial\lambda}
= \rho \sin^2(\theta) + \sin(2\theta)\frac{\partial\theta}{\partial\lambda} \left(\lambda\rho - q - \frac{1}{p}\right)
\frac{\partial\theta}{\partial\lambda}(a,\lambda) = 0.$$
(2)

Thus using an integrating factor, we can solve for $\frac{\partial \theta}{\partial \lambda}$ and see that it is > 0. Hence θ is strictly increasing in λ .

Now note that for λ large enough, $\theta' \geq \frac{\lambda \sin^2(\theta) + 1}{C}$ (why?) This means that θ is strictly increasing. If $\lim_{\lambda \to \infty} \theta(t, \lambda) = L < \infty$ for some $t = t_0$, then the limit is $\leq L$ for all $t \in (a, t_0]$. Thus there are N+1 zeroes of $\sin^2(\theta)$ in $[a, t_0]$. Therefore, for at least an interval [v, w] of size $\frac{t_0 - a}{N + 3}$, we know that $k\pi \leq \theta \leq (k+1)\pi$. On this interval of t, $\int_{k\pi}^{(k+1)\pi} \frac{d\theta}{\lambda \sin^2(\theta) + 1} \geq \frac{w - v}{C}$. Upon explicit integration (by taking $t = \tan(\theta)$ for instance), we arrive at a contradiction.