1 Recap

- 1. Examples of equilibria and limit cycles.
- 2. Liapunov stability and asymptotic stability.
- 3. Perron's theorem (statement and example):

Theorem 1. Let A be a real $n \times n$ matrix whose eigenvalues all have negative real parts. Consider x' = Ax + f(t,x) where f is continuous and satisfies $||f(t,x)|| < \epsilon ||x||$ for all $||x||\delta$ (δ is independent of t). Then any solution x with sufficiently small x(0) exists for all $t \ge 0$ and x(t) tends to 0 as $t \to \infty$.

2 Liapunov stability

Proof. Firstly note that $\|e^{tA}\| \leq Ke^{-\sigma t}$ for some $K>1, \sigma>0$ as we saw in the HW. Now by Cauchy-Peano, there exists a solution with any given initial data x_0 for a short time $[0,t_*]$. Moreover, we can prove (how) that $x(t)=e^{At}x_0+\int_0^t e^{(t-s)A}f(s,x(s))ds$. By the hypothesis on f, there exists a $\delta>0$ such that $\|f(t,x)\|\leq \frac{\sigma}{2K}\|x\|$ for all $\|x\|\leq \delta$. Now assume that $\|x_0\|\leq \frac{\delta}{K}$. We claim that for all such x_0 , the solution exists for all time and satisfies $\|x\|\leq \delta$. Indeed, the solution exists on a maximal interval. Consider the set of all t for which $\|x\|\leq \delta$. This set obviously contains $[0,t_*]$ for some t_* . Consider the maximum such t_* . For all $t\leq t_*$, $\|x(t)\|\leq Ke^{-\sigma t}\|x_0\|+\frac{\sigma}{2}\int_0^t e^{-\sigma(t-s)}\|x(s)\|ds$. Multiplying by $e^{\sigma t}$ and using Gronwall, $e^{\sigma t}\|x\|\leq K\|x_0\|e^{\sigma/2t}$. Hence, $\|x\|\leq K\|x_0\|e^{-\sigma/2t}<\delta$ and hence the solution extends beyond t_* and satisfies $\|x\|\leq \delta$ beyond it as well. Thus t_* is not finite.

Before we proceed, here is an important definition: An equilibrium \bar{x} is called hyperbolic if all the eigenvalues of $Df(\bar{x})$ have non-zero real parts. Here are some more examples:

- 1. $x' = -y + x(x^2 + y^2)$, $y' = x + y(x^2 + y^2)$. Here A has eigenvalues $\pm \sqrt{-1}$. So the theorem above does not apply. The linearisation at the origin has the origin as a stable (but not asymptotically stable) equilibirum point. However, considering $r = \sqrt{x^2 + y^2}$, $r' = r^3$ and hence if $r_0 > 0$, then r blows up in finite time. Thus the origin is unstable. On the other hand, if we consider $x' = -y x(x^2 + y^2)$, $y' = x y(x^2 + y^2)$, then $r' = -r^3$ and hence the origin is asymptotically stable.
- 2. The Duffing system with negative sign: $x'=y, y'=x-x^3-\delta y$. The equilibria are $(0,0), (\pm 1,0)$. The linearisation at (0,0) has eigenvalues $\frac{-\delta \pm \sqrt{\delta^2+4}}{2}$. This point is linearly unstable when $\delta \geq 0$. At $(\pm 1,0)$, the eigenvalues are $\frac{-\delta \pm \sqrt{\delta^2-8}}{2}$. Thus for $\delta > 0$, the eigenvalues have negative real parts and by the theorem above, these equilibria are asymptotically stable. If $\delta = 0$, the points are linearly stable but not linearly asymptotically stable. It is hard to analyse the nonlinear system.