1 Recap

- 1. Suppose a Liapunov function V exists. Then the origin is stable. If $\nabla V.F < 0$ on $\Omega \{0\}$, then 0 is asymptotically stable.
- 2. (Chetaev's theorem)

Theorem 1. Suppose there is a C^1 function $V: \Omega \to \mathbb{R}$ satisfying V(0) = 0, and there exists a $\tilde{\epsilon} > 0$ so that in every neighbourhood of size $< \tilde{\epsilon}$ of 0, there is a non-empty set where V > 0 and $\nabla V.\vec{F} > 0$ on the region V > 0, then 0 is unstable.

2 Liapunov functions

We now consider a few examples.

- 1. Consider $x'=y, y'=x-x^3$. Note that V=xy satisfies $\nabla V.\vec{F}=(y,x).(y,x-x^3)=y^2+x^2-x^4>0$ when $x^2<1$ (and $(x,y)\neq 0$). Thus by the above theorem, the origin is unstable.
- 2. Consider $x'=-y^3$, $y'=x^3$. The only equilibrium is the origin and there Df(0)=0. Thus Perron is not applicable. Consider $V=x^4+y^4$. Then V(0)=0, V>0 away from the origin, and $\nabla V.\vec{F}=(4x^3,4y^3).(-y^3+x^3)=0$. Thus the origin is stable. Actually in this case, the orbits stay on V=c. Thus the origin is not asymptotically stable.
- 3. Consider x' = -2y + yz, y' = x xz, z' = xy. The origin is an equilibrium. The eigenvalues of the Jacobian at the origin are $0, \pm 2i$ and hence Perron is not applicable. Consider $V = c_1x^2 + c_2y^2 + c_3z^2$. Then if $c_1 = c_3 > 0$ and $c_2 = 2c_1$, V(x) > 0 for $x \neq 0$ and $\nabla V.\vec{F} = 0$. Thus the orbits lie on ellipsoids (and are stable but not asymptotically stable). The Liapunov theorem is not applicable here! The reason is that the equilibria are: (0,0,z), (0,y,2), and (x,0,1), which are not isolated!
- 4. Consider $x'=-2y+2yz-x^3, y'=x-xz-y^3, z'=x^2z-z^3$. The origin is an isolated equilibrium (because the other equilibria arise as zeroes of one-variable polynomials). The Jacobian matrix again has the same eigenvalues as the previous example. This time $V=x^2+2y^2+z^2$ works to prove asymptotic stability because $\nabla V.\vec{F}<0$.
- 5. $x'=x^2+2y^5, y'=xy^2$ has the origin as the only equilibrium. The linearisation is 0. Now consider $V=x^2-y^4$ (which is 0 at the origin). Now $\nabla V.F=(2x,-4y^3).(x^2+2y^5,xy^2)=2x^3+4xy^5-4xy^5=2x^3>0$ when x>0. Now V>0 when $x^2>y^4\geq 0$. Hence by Chetaev, the origin is unstable.