1 Recap

1. Examples of stability and instability. Mistake in Nandakumaran's book.

2 Invariant sets and manifolds

A set $S \subset \mathbb{R}^n$ is said to be invariant under x' = f(x) if for any $x_0 \in S$, $x(t) \in S \ \forall \ t \in \mathbb{R}$ and positively invariant if $x(t) \in S \ \forall \ t \in [0, \infty)$. Sometimes these sets can possess more structure. Here are some examples.

- 1. $x'=x,y'=-y+x^2$. The only equilibrium is the origin. The linearisation has eigenvalues ± 1 . So the stable subspace and unstable subspace each have dimension 1. We can actually explicitly solve this system to get $x=x_0e^t,y=y_0e^{-t}+\frac{x_0^2e^{-t}(e^{3t}-1)}{3}$. Eliminating $t,x(y-x^2/3)=x_0(y_0-x_0^2/3)$. These are invariant subsets of the ODE. Moreover, if $x_0=0$, x=0 and $y\to 0$ as $t\to \infty$. This set is called a "stable manifold" (what is a manifold? Whatever it is, it is a generalisation of a "smooth regular" surface in \mathbb{R}^3 . It is supposed to be a nonlinear generalisation of a vector space.) If $y_0=\frac{x_0^2}{3}$, then $y=\frac{x^2}{3}$ is an invariant subset. Moreover, every point on this subset goes to ∞ as $t\to \infty$ (actually, more precisely it goes to 0 as $t\to -\infty$).
- 2. We can take a similar example in three dimensions: $x' = -x, y' = -y + x^2, z' = z + x^2$. The linearisation at the origin (the only equilibrium) has eigenvalues -1, -1, 1 (so hyperbolic). Thus the stable subspace is 2-dimensional and the unstable one 1-dimensional. Upon solving, $x = x_0 e^{-t}, y = y_0 e^{-t} + x_0^2 (e^{-t} e^{-2t}), z = z_0 e^t + \frac{x_0^2 e^t (1 e^{-3t})}{3}$. Thus $\|(x, y, z)\| \to 0$ (as $t \to -\infty$) iff $x_0 = y_0 = 0$. On the other hand $\|(x, y, z)\| \to 0$ iff $z_0 + \frac{x_0^2}{3} = 0$. These sets are invariant (why?)
- 3. Consider a previous example: x' = -2y + yz, y' = x xz, z' = xy. Then $x^2 + 2y^2 + z^2 = a^2$, $x^2 + y^2 + z = b$ are invariant sets. The origin is not hyperbolic.

We want to say roughly that under some conditions (hyperbolicity), there is a nonlinear version of the stable-unstable subspaces theorem. To state this theorem rigorously, we need to know what a manifold is. The simplest nonlinear generalisation of a subspace of \mathbb{R}^n is the graph of a function. Indeed, this is what manifolds are modelled after. Def: An n-dimensional C^r (embedded sub)manifold in \mathbb{R}^N is a set $S \subset \mathbb{R}^N$ (with the induced topology) such that given any point $p \in S$, there exists a neighbourhood $p \in U \subset \mathbb{R}^N$ such that $S \cap U$ is the homeomorphic image of a C^r map $f: V \subset \mathbb{R}^n \to \mathbb{R}^N$ (where V is open) such that Df has rank-n everywhere. Here r can be ∞ in which case it is called a smooth manifold. r can also be 0 (and we drop the derivative condition) in which case it is called a topological (embedded sub)manifold.