Recap 1

- 1. Invariant sets and examples.
- 2. Definition of (embedded sub)manifolds in \mathbb{R}^N .

Invariant sets and manifolds 2

The f's are called C^r local parametrisations (and their inverses are called 'charts'). It turns out using the inverse function theorem that in fact one can write a C^r (when $r \geq 1$) manifold locally as C^r graphs over some coordinate-axes in \mathbb{R}^N . Indeed, just for some practice let's prove this fact. Firstly, let's recall the inverse function theorem: Suppose $F: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ is a C^r map (where Ω is open and $\infty \geq r \geq 1$) and DF_p is invertible, then there exist neighbourhoods $p \in U$ and $f(p) \in V$ such that f takes U to V homeomorphically and the inverse is C^r (it is a local C^r diffeomorphism). Given this theorem, n rows in $Df_{f^{-1}n}$ are linearly independent. Suppose they are i_1,\ldots,i_n . Consider the map $T(u_1,\ldots,u_n)=(f_{i_1},\ldots,f_{i_n})$. This map is C^r and $DT_{f^{-1}p}$ is invertible. Hence by the inverse function theorem, locally, u's are C^r functions of x_{i_k} 's. Thus the rest of the f's are C^r functions of x_{i_k} 's locally.

Here are examples and non-examples of manifolds in \mathbb{R}^N :

- 1. The graph of y = |x| is not a C^1 -manifold in \mathbb{R}^2 : Indeed, if it were, then near the origin, y is a C^1 function of x (why?) and that is a contradiction.
- 2. The shape of the letter X is not even a topological manifold in \mathbb{R}^2 (why?)
- 3. The graph of any smooth function $f: \mathbb{R}^n \to \mathbb{R}$ is a smooth n-dimensional manifold in \mathbb{R}^{n+1} .
- 4. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is smooth, $f^{-1}(0)$ is non-empty, and $\nabla f \neq 0$ at every point of $f^{-1}(0)$, then $f^{-1}(0)$ is an n-1-dimensional manifold in \mathbb{R}^n (why? This uses the implicit function theorem). For instance, the sphere is a manifold.
- 5. An open subset of \mathbb{R}^n is an n-dimensional manifold.

We now define the tangent space $T_pM\subset\mathbb{R}^N$ of a C^r $(r\geq 1)$ manifold in \mathbb{R}^N : It is the subspace spanned by $\frac{\partial f}{\partial u}(f^{-1}(p))$. This subspace does not depend on the choice of f (why?)

Now we can state the stable manifold and the Hartman-Grobman theorems:

Theorem 1. Consider x' = f(x) where $f: \Omega \to \mathbb{R}^n$ is C^1 and Ω is a neighbourhood of the origin which is an equilibrium point. Let Df(0) have k eigenvalues with strictly negative real parts and n-k with strictly positive real parts (so 0 is hyperbolic). Then the following hold.

- 1. There exists a C^1 -k-dimensional manifold S that is tangent to the stable subspace at 0 such that S is positively invariant and every point is stable (that is $\lim_{t\to\infty} x=0$).
- 2. There exists a C^1 -n-k-dimensional manifold U that is tangent to the unstable subspace at 0 such that S is negatively invariant and every point is unstable (that is $\lim_{t\to\infty} x=0$).