1 Recap

- 1. Poincaré index.
- 2. $I_{\vec{v}}(\gamma) = 0$ if \vec{v} has no equilibria inside.
- 3. Definition of $I_{\gamma'}(\gamma)$ and statement that it is 1.

2 Periodic orbits

Theorem 1. Let γ be a C^1 Jordan curve which is regular and $\gamma'(a) = \gamma'(b)$. Then $I_{\gamma'}(\gamma) = 1$.

Proof. Firstly, we can assume that $\gamma:[0,l]\to\mathbb{R}^2$ 0 has unit speed (why?) Secondly, by translating and reparametrisation (does not change the index - why?), we can assume that γ is in the upper half-plane, and $\gamma(0)_2=\gamma_2(l)=0$ (with $\gamma_2>0$ otherwise). The idea is to compare the rotation of the tangent vector with that of the secant/chord around the x-axis. So consider the secant vector field X(s,t) defined on the triangular region $0 \le s \le t \le l$ as $X(s,s)=\gamma'(s), X(s,t)=\frac{\gamma(t)-\gamma(s)}{\|\gamma(t)-\gamma(s)\|}$ when $t>s,\ (s,t)\ne(0,l)$ and $X(0,l)=-\gamma'(0)$. This vector field is continuous (why?). Let $\theta(s,t)$ be the angle made by X(s,t) with the positive x-axis. (It is well-defined and continuous by the lifting property.) Choose the initial point such that $\theta(0,0)=0$. Clearly, $\theta(0,t)$ varies from 0 to π as t varies from 0 to l. On the other hand l0, l1 varies from l2 to l2. Thus l3 changes by l4 on l5. This means the index is 1.