1 Recap

- 1. Stated the theorem of the Jordan canonical form and illustrated with a simple 2×2 example.
- 2. Proved that y' = Ay has an *n*-dimensional space of solutions.

2 Linear systems of ODE

2.1 Exponentiation

We shall define a notion of the matrix exponential e^A for a square matrix A. To this end, we recall the definition of norm $\|.\| : V \to \mathbb{R}$ on a real/complex vector space V:

1. $||v|| \ge 0$ with equality iff v = 0.

2.
$$||av|| = |a|||v||$$
.

3. $||v + w|| \le ||v|| + ||w||$.

An obvious example of a norm is one that comes from an inner product: $||v||^2 = \langle v, v \rangle$. However, not all norms arise this way (for instance, the "taxi-cab" norm on \mathbb{R}^n : $||v|| = \sum_i |v_i|$). If indeed a norm arises from an inner product, it is easy to see that the polarisation identity holds: $||v+w||^2 + ||v-w||^2 = 2||v||^2 + 2||w||^2$. If this identity holds, then indeed $\langle v, w \rangle := \frac{||v+w||^2 - ||v-w||^2}{2}$ can be proven to be an inner product.

Two norms are said to be equivalent if there exists a constant C > 0 such that $\frac{1}{C} \|v\|_1 \le \|v\|_2 \le C \|v\|_1$ for all vectors v. One can prove that on a finite-dimensional vector space, all norms are equivalent to each other.

On the space of $n \times n$ real/complex matrices there are natural norms. One is the Hilbert-Schmidt norm: $||A||_{HS}^2 = \sum_i |A_{ij}|^2$. Another is the operator norm $||A||_{op} = \max_{|v|=1} ||Av||$. These norms are sub-multiplicative, i.e., $||AB|| \le ||A|| ||B||$ (why?)

Given these notions, on a normed vector space, we can talk about convergence of sequences: $a_n \to a$ if $||a_n - a|| \to 0$ in the sense of real numbers. We have the usual properties of convergence. In addition, on \mathbb{R}^n or \mathbb{C}^n (or for that matter, any finite-dimensional vector space with a basis), $a_n \to a$ iff the individual components converge (why?). We now make the following definition.

Definition: Let *A* be a complex/real $n \times n$ matrix. Define $e^A := I + A + A^2/2! + \dots$ Lemma: This series converges.

Proof: We shall prove that this series is Cauchy. Then each entry forms a Cauchy sequence (why?) and hence by the completeness of reals, it converges. Indeed, $\|\sum_{k=n}^{m} \frac{A^k}{k!}\| \leq \sum_{k=n}^{m} \frac{\|A\|^k}{k!} \leq \sum_{k=n}^{m} \frac{\|A\|^k}{k!}$ (why?) Now we know that $e^{\|A\|}$ exists as a convergent series (why?) and hence we are done (why?) \Box We have a couple of properties (most are easy to prove):

1. Suppose $B = PAP^{-1}$. Then $e^B = Pe^AP^{-1}$.

- 2. If A is block diagonal with diagonal entries A_i , then so is e^A with diagonal entries e^{A_i} .
- 3. If AB = BA, then $(A + B)^k = \sum {n \choose k} A^k B^{n-k}$ and $e^{A+B} = e^A e^B$. (In general, this is not true. In fact, the quest to find a relationship between e^{A+B} and $e^A e^B$ leads to the theory of Lie algebras. (The Baker-Campbell-Hausdorff formula.)
- 4. e^{A} is invertible and $(e^{A})^{-1} = e^{-A}$.
- 5. $||e^A|| \le e^{||A||}$.
- 6. If $J = \lambda I + N$ is a Jordan block, then $e^J = e^{\lambda}e^N = e^{\lambda}(I + N + N^2/2! + ... + N^{n-1}/(n-1)!$ because $N^n = 0$. As a consequence, $||e^{tA}| \le ke^{-rt}$ for all $t \ge 0$ if the real parts of all eigenvalues of A are strictly negative. (HW)

An interesting point: If we guess at 2 linearly independent solutions to $y'' = -k^2y$, we are done because of the theorems above. We can try $\sin(kx), \cos(kx)$ and they work. This raises a question: Suppose u_1, u_2 are two differentiable functions, when can we say that they are linearly independent? Indeed, suppose $c_1u_1 + c_2u_2 = 0$, then $c_1u'_1 + c_2u'_2 = 0$. Thus this system does not have a non-trivial solution if det $\begin{pmatrix} u_1 & u_2 \\ u'_1 & u'_2 \end{pmatrix} \neq 0$. More generally, u_1, \ldots, u_n are linearly independent if a similar determinant involving higher derivatives does not vanish (what determinant?) This determinant is called the Wronskian.

Another interesting application of the Wronskian: If y'' = a(x)y' + b(x)y, then W(x) the Wronskian, satisfies W' = aW and hence W is known. (As a consequence, if the Wronskian vanishes at one point, it does so everywhere.) Now we can solve for one of the linearly independent solutions knowing the other!