1 Recap

1. Stated the theorem of the Jordan canonical form and illustrated with a simple
2 x 2 example.

2. Proved that ¢y’ = Ay has an n-dimensional space of solutions.

2 Linear systems of ODE

2.1 Exponentiation

We shall define a notion of the matrix exponential e” for a square matrix A. To this
end, we recall the definition of norm |.|| : V' — R on a real/complex vector space V"

1. ||v]] > 0 with equality iff v = 0.
2. [lav] = lal[[]-
3. lv+ wlf < vl + fJw]]-

An obvious example of a norm is one that comes from an inner product: ||v||? = (v, v).
However, not all norms arise this way (for instance, the “taxi-cab" norm on R™:
|v]| = >, |vi]). If indeed a norm arises from an inner product, it is easy to see that the
polarisation identity holds: ||v+w||*>+||v —w]||* = 2||v||* 4 2||w]||?. If this identity holds,
then indeed (v, w) := w can be proven to be an inner product.

Two norms are said to be equivalent if there exists a constant C' > 0 such that
Sllvlli < flvll2 < C|lv|y for all vectors v. One can prove that on a finite-dimensional
vector space, all norms are equivalent to each other.

On the space of n x n real/complex matrices there are natural norms. One
is the Hilbert-Schmidt norm: ||Alj%s = >, |A;|?. Another is the operator norm
|Allop = maxp,=; ||[Av]|. These norms are sub-multiplicative, i.e., [[AB| < ||Al|||B||
(why?)

Given these notions, on a normed vector space, we can talk about convergence of
sequences: a,, — a if ||a, — a|| — 0 in the sense of real numbers. We have the usual
properties of convergence. In addition, on R or C" (or for that matter, any finite-
dimensional vector space with a basis), a,, — a iff the individual components converge
(why?). We now make the following definition.

Definition: Let A be a complex/real n x n matrix. Define e := [ + A + A?/2! + .. ..
Lemma: This series converges.

Proof: We shall prove that this series is Cauchy. Then each entry forms a Cauchy
sequence (why?) and hence by the completeness of reals, it converges. Indeed,

IS A< S w < S % (why?) Now we know that el4l exists as a
convergent series (why?) and hence we are done (why?) O

We have a couple of properties (most are easy to prove):

1. Suppose B = PAP~!. Then e? = PeAP~1.



2. If Aisblock diagonal with diagonal entries A;, then so is e with diagonal entries
e,

3. If AB = BA, then (A + B)* = (})A*B" % and e**? = e¢e? . (In general, this
is not true. In fact, the quest to find a relationship between e**? and e“e® leads
to the theory of Lie algebras. (The Baker-Campbell-Hausdorff formula.)

4. e/ is invertible and (e”)~! = e,

5. [led]| < 4.

6. If J = M + N is a Jordan block, then ¢/ = e*eV = eMI + N + N2/2! + ... +
N""1/(n —1)! because N" = 0. As a consequence, ||e!t| < ke " for all ¢ > 0 if the
real parts of all eigenvalues of A are strictly negative. (HW)

An interesting point: If we guess at 2 linearly independent solutions to y” = —k?y,
we are done because of the theorems above. We can try sin(kz), cos(kz) and they
work. This raises a question: Suppose u;,uy are two differentiable functions, when
can we say that they are linearly independent? Indeed, suppose ciu; + cous = 0, then

c1u)+coufy, = 0. Thus this system does not have a non-trivial solution if det ( Z,l 5,2 ) #
1 Uy

0. More generally, u4, . .., u, are linearly independent if a similar determinant involving
higher derivatives does not vanish (what determinant?) This determinant is called the
Wronskian.

Another interesting application of the Wronskian: If v = a(x)y’ + b(z)y, then W (z)
the Wronskian, satisfies W’ = al¥ and hence IV is known. (As a consequence, if the
Wronskian vanishes at one point, it does so everywhere.) Now we can solve for one of
the linearly independent solutions knowing the other!
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