
1 Recap
1. Stated the theorem of the Jordan canonical form and illustrated with a simple

2× 2 example.

2. Proved that y′ = Ay has an n-dimensional space of solutions.

2 Linear systems of ODE

2.1 Exponentiation
We shall define a notion of the matrix exponential eA for a square matrix A. To this
end, we recall the definition of norm ∥.∥ : V → R on a real/complex vector space V :

1. ∥v∥ ≥ 0 with equality iff v = 0.

2. ∥av∥ = |a|∥v∥.

3. ∥v + w∥ ≤ ∥v∥+ ∥w∥.

An obvious example of a norm is one that comes from an inner product: ∥v∥2 = ⟨v, v⟩.
However, not all norms arise this way (for instance, the “taxi-cab" norm on Rn:
∥v∥ =

∑
i |vi|). If indeed a norm arises from an inner product, it is easy to see that the

polarisation identity holds: ∥v+w∥2+∥v−w∥2 = 2∥v∥2+2∥w∥2. If this identity holds,
then indeed ⟨v, w⟩ := ∥v+w∥2−∥v−w∥2
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can be proven to be an inner product.

Two norms are said to be equivalent if there exists a constant C > 0 such that
1
C
∥v∥1 ≤ ∥v∥2 ≤ C∥v∥1 for all vectors v. One can prove that on a finite-dimensional

vector space, all norms are equivalent to each other.
On the space of n × n real/complex matrices there are natural norms. One

is the Hilbert-Schmidt norm: ∥A∥2HS =
∑

i |Aij|2. Another is the operator norm
∥A∥op = max|v|=1 ∥Av∥. These norms are sub-multiplicative, i.e., ∥AB∥ ≤ ∥A∥∥B∥
(why?)

Given these notions, on a normed vector space, we can talk about convergence of
sequences: an → a if ∥an − a∥ → 0 in the sense of real numbers. We have the usual
properties of convergence. In addition, on Rn or Cn (or for that matter, any finite-
dimensional vector space with a basis), an → a iff the individual components converge
(why?). We now make the following definition.
Definition: Let A be a complex/real n× n matrix. Define eA := I + A+ A2/2! + . . ..
Lemma: This series converges.
Proof: We shall prove that this series is Cauchy. Then each entry forms a Cauchy
sequence (why?) and hence by the completeness of reals, it converges. Indeed,
∥
∑m

k=n
Ak

k!
∥ ≤

∑m
k=n

∥Ak∥
k!

≤
∑m

k=n
∥A∥k
k!

(why?) Now we know that e∥A∥ exists as a
convergent series (why?) and hence we are done (why?)
We have a couple of properties (most are easy to prove):

1. Suppose B = PAP−1. Then eB = PeAP−1.



2. If A is block diagonal with diagonal entries Ai, then so is eA with diagonal entries
eAi .

3. If AB = BA, then (A + B)k =
∑(

n
k

)
AkBn−k and eA+B = eAeB . (In general, this

is not true. In fact, the quest to find a relationship between eA+B and eAeB leads
to the theory of Lie algebras. (The Baker-Campbell-Hausdorff formula.)

4. eA is invertible and (eA)−1 = e−A.

5. ∥eA∥ ≤ e∥A∥.

6. If J = λI + N is a Jordan block, then eJ = eλeN = eλ(I + N + N2/2! + . . . +
Nn−1/(n− 1)! because Nn = 0. As a consequence, ∥etA| ≤ ke−rt for all t ≥ 0 if the
real parts of all eigenvalues of A are strictly negative. (HW)

An interesting point: If we guess at 2 linearly independent solutions to y′′ = −k2y,
we are done because of the theorems above. We can try sin(kx), cos(kx) and they
work. This raises a question: Suppose u1, u2 are two differentiable functions, when
can we say that they are linearly independent? Indeed, suppose c1u1 + c2u2 = 0, then

c1u
′
1+c2u

′
2 = 0. Thus this system does not have a non-trivial solution ifdet

(
u1 u2

u′
1 u′

2

)
̸=

0. More generally, u1, . . . , un are linearly independent if a similar determinant involving
higher derivatives does not vanish (what determinant?) This determinant is called the
Wronskian.
Another interesting application of the Wronskian: If y′′ = a(x)y′ + b(x)y, then W (x)
the Wronskian, satisfies W ′ = aW and hence W is known. (As a consequence, if the
Wronskian vanishes at one point, it does so everywhere.) Now we can solve for one of
the linearly independent solutions knowing the other!
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