
1 Recap
1. Defined the Wronskian and proved that is non-vanishing can be used to prove lin-

ear independence. Moreover, used it to guess another solution of a homogeneous
second order linear equation if one is already known.

2. Defined the matrix exponential and proved some properties (including the ability
to calculate it using Jordan blocks).

2 Linear systems of ODE
We have one last property.

1. det(eA) = etr(A): det(eA) = det(PeJP−1) = det(eJ) = e
∑

i λi det(eN1) det(eN2) . . ..
Now eN is upper-triangular with diagonal entries equal to 0 (why?) and thus
det(eN) = 1. Thus we are done.

Now we define a matrix-valued function of 1-variable to be continuous/differentiable
iff each entry is so. We claim that if A(t), B(t) are differentiable then so is AB and
(AB)′ = A′B + AB′ (exercise). Moreover,
Lemma: etA is differentiable and its derivative is AetA.
Proof: etA = PetJP−1. Now for a pure Jordan block Ji, etJi = etλetNi . Now etNi has
polynomial entries in t and is hence differentiable. Thus etA is differentiable. Now
etNi = I+ tNi+ t2N2

i /2!+ . . .+ tk−1Nk−1
i /(k−1)! and hence (etNi)′ = Ni(1+ tNi+ . . .) =

Nie
tNi . Hence (etJi)′ = Jie

tJi and (etA)′ = AetA.
Now we can solve y′ = Ay: Note that (e−Aty)′ = e−Aty′ − e−AtAy = 0 and hence
e−Aty = y0 and y = eAty0. Here is a basis of solutions: eAtei. The space of solutions
is n-dimensional. We can calculate the matrix exponential using the Jordan canonical
form (or any other method of our choice).
We can also solve the inhomogeneous autonomous problem y′ = Ay + f : e−At(y′ −
Ay) = e−Atf and hence (ye−At)′ = e−Atf and y = eAty0 + eAt

∫ t

0
e−Asf(s)ds or more

generally, y = eA(t−t0)y(t0)+ eA(t−t0)
∫ t

t0
e−Asf(s)ds . This formula is called the Duhamel

formula/method of variation of parameters.
Here is an example: y′′ = −ky−by′+f . We already know what eAt is in this case (why?)
Now we have reduced the problem to an integral involving f . If f is exponential, the
integral is easy. Otherwise, one cannot do much more.
In older parlance, if we know one solution (a “particular" solution) to y′ = Ay+ f , then
every solution is y = y0 + h where h is a solution of the homogeneous problem (given
by eAty0). Since the particular solution is obtained by simply making y0 into a specific
function (as opposed to a constant), the name “variation of parameters" came about.
We shall now discuss only uniqueness (existence will be considered later) for a non-
autonomous system y′ = A(t)y + B(t) where A(t), B(t) are continuous functions on
[a, b]with y(t0) = y0 where t0 ∈ [a, b]. Without loss of generality, t0 = 0 (why?). Suppose
u, v are differentiable solutions with u(t0) = v(t0), then (u − v)′ = A(t)(u − v). Thus

u − v =

∫ t

t0

A(u − v)ds. Thus ∥u − v∥ = ∥
∫ t

t0

A(u − v)ds. Now we have the following

lemma.



Lemma 2.1. Let f : [a, b] → Rn be a continuous function. Then ∥
∫ t

t0
f(s)ds∥ ≤

∫ t

t0
∥f(s)∥ds.

Proof. Indeed, let v(t) =
∫ t

t0
f(s)ds. Then ∥v∥2 = v.

∫ t

t0
f(s)ds =

∫ t

t0
v(t).f(s)ds ≤∫ t

t0
∥v(t)∥∥f(s)∥ds = ∥v(t)∥

∫ t

t0
∥f(s)∥ds. Hence we are done.

Thus, ∥u − v∥ ≤
∫ t

t0
∥A(t)∥∥u − v∥. If A(t) is continuous, then so is ∥A(t)∥ and

thus ∥A(t)∥ ≤ C on [a, b]. Using Gronwall’s inequality (HW problem), we see that
∥u− v∥ ≤ eC(t−t0)∥u− v∥(t0) = 0. Hence u = v.
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