
1 Recap
1. Stated and proved a theorem about real-analytic non-autonomous linear systems

having real-analytic solutions.

2 Real-analytic functions
While the theorem above is pleasant, it does not cover all cases of interest. For example,
suppose we want to study an electrostatic field in a long cylinder with potential (cylin-
drical symmetry) specified on the cylinder, we will have to solve the Laplace equation
in cylindrical coordinates (r, θ, z). That is,
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ϕθθ + ϕzz = 0. (1)

We use the method of separation of variables, i.e., ϕ = R(r)P (θ)Z(z). Then we see that
R satisfies
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R′′ − λr2 = constant. (2)

That is, it is of the form (after changing variables and solving the other equations)
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)
= 0 where ν is an integer. This is an example of Bessel’s equation.

(The solutions are called Bessel functions Jν(t).) It occurs in various other situations in
real life (and in probability I believe as the pdf of a product of two normal variables).
Likewise, if we try to solve the Laplace in spherical coordinates (or more generally, the
eigenvalues problem arising from the Hydrogen atom for instance), after separation of
variables, the solutions to the angular part are Pn(cos(θ)) where Pn are the Legendre
polynomials satisfying the equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0. (3)

Suppose we declare v = y′, these equations do not fall under the purview of the theorem
above because A,B are no longer real-analytic. They have singularities (why?) In fact,
if we try v = ty′, then the equations fall under the purview of

y⃗′ =
A(t)

t
y⃗, (4)

where A(t) is real-analytic. Such systems are called systems with regular singular points
(an oxymoron?) Suppose y⃗(t0) = y⃗0 where t0 > 0 (the case of < 0 is similar), then
declare s = ln(t). We can now consider

d

ds
y⃗(es) = A(es)y⃗(es). (5)

The usual Frobenius method above can be applied to this equation to conclude the
existence of a real-analytic solution in a neighbourhood of s0 = ln(t0). Changing
variables, we see that y is a power series in ln(t). Now here is an interesting lemma
(proof is a HW exercise).



Lemma 2.1. Let f(t) be real-analytic at g(t0) and g(t) at t0. Then h(t) = f(g(t)) is real-
analytic at t0.

Thus y is real-analytic in t near t0. However, what can we say about the power
series really? For instance, if A(t) is a constant, then in terms of s, y⃗ = eA(s−s0)y⃗0.
Thus, y⃗(t) = eA ln(t)e−A ln(t0)y⃗0. Now writing A in the Jordan canonical form (and
noting that the ratio test and so on apply to complex power series as well), eA ln t =
PeJ ln(t)P−1. If J is a Jordan block, then eJ ln(t) = tλR(cos(λI ln(t))+

√
−1 sin(λI ln(t)))(I+

N ln(t)+N2(ln(t))2/2!+. . .). Thus we can in general hope for a solution involving linear
combinations of functions of the type tr

∑
ant

n(p(ln(t)) where r and an are in general,
complex, and p is a possibly complex polynomial.
Let us specialise to equations of the form y′′+P (t)y′+Q(t)y = 0. If we want this to have
regular singular points at t = 0, then P (t)t and Q(t)t2 are real-analytic around 0 (why?)
Thus P (t) = p0

t
+ p1 + p2t+ . . ., Q(t) = q0

t2
+ q1

t
+ q2 + . . .. Let y(t) = tm(a0 + a1t+ . . .).

Then y′ =
∑

n=0 an(m+ n)tm+n−1, y′′ = tm−2
∑

an(m+ n)(m+ n− 1)tn. Now P (t)y′ =
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ak(m+ k)tm+k−1 and so on. Thus

anf(m+ n) +
n−1∑
k=0

ak((m+ k)pn−k + qn−k) = 0, (6)

where f(m+ n) = (m+ n)(m+ n− 1) + (m+ n)p0 + q0 ∀ n ≥ 0. For n = 0 we see that
f(m) = 0.
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