
1 Recap
1. Set up the stage for Frobenius’ method with the indicial equation anf(m + n) +∑n−1

k=0 ak((m + k)pn−k + qn−k) = 0 where f(m + n) = (m + n)(m + n − 1) + (m +
n)p0 + q0 ∀ n ≥ 0. (Note that a0f(m) = 0 and we want a0 to be a free parameter.
So we want f(m) = 0.)

2 Real-analytic functions
It turns out (Frobenius’ theorem) that
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n do. Here is the proof: First fix r < R. We see that |pk|+ |qk| ≤ C
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.

1. f(m2 + n) 6= 0 (In particular, ifm1 −m2 is not a non-negative integer):
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Again, we define un with u0 = |a0| satisfying
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n

n−1∑
k=0

uk
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We see that un ≥ |an| by induction. Thus un = un−1 ((n− 1)/nr + C/n). Thus
lim un

un−1
= 1

r
. Thus

∑
un(r− ε)n converges and by the Weierstrass-M test,
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converges uniformly on [r − ε, r + ε] and since r, ε are arbitrary, we are done.
We claim that if m1 −m2 is not an integer, then these two solutions are linearly
independent (HW).

2. m1 = m2 + n0 where n0 is a non-negative integer: The above argument works for
m1. Now we try y2 = tm2

∑
bnt

n + C ln(t)y1. Substituting into the ODE we get
(after simplification using the fact that y1 is a solution)
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anf(m+ n) +
n−1∑
k=0

ak((m+ k)pn−k + qn−k) = 0, (4)

where f(m+ n) = (m+ n)(m+ n− 1) + (m+ n)p0 + q0 ∀ n ≥ 0. For n = 0 we see that
f(m) = 0. Now we have two cases.



1. m1 = m2 + n0 where n0 ≥ 1: The above argument works for m1 to produce a
solution y1. For bn, we see that

(tm2

∑
bnt

n)′′ + P (t)(tm2

∑
bnt

n)′ +Q(t)(tm2

∑
bnt

n)− Cy1
t2

+
2Cy′1
t

+
CPy1
t

= 0.

(5)

Thus defining ak = 0 = bk for negative k,
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For n = n0 we see that

C(2m1 − 1 + p0)a0 +
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and hencewe can solve forC (because inductively, we can solve for bk up to n0−1).
By the way, 2m1−1+p0 6= 0 because by assumption the quadratic f(x) does NOT
have multiple roots and hence f ′(m1) = 2m1 − 1 + p0 6= 0. Now f(m+ n) 6= 0 for
n > n0. Thus we can solve for all the other bk. We now have to prove that
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converges absolutely and uniformly on [−(r − ε), r + ε] where r < R and ε > 0
are arbitrary. Note that |ak| ≤ C
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for all k ≥ 0. Hence for all sufficiently large n

(≥ N ) we see that
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As usual, we define uN = |bN | > 0 (without loss of generality) and un to satisfy
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Note that un ≥ |bn| > 0 inductively and that un ≥ Cn
rn
∀ n ≥ N + 1. Now we see

that
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To be continued....
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