1 Recap

1. Set up the stage for Frobenius’ method with the indicial equation a,, f(m + n) +

v a((m + K)pui + Gu_r) = 0 where f(m +n) = (m +n)(m +n — 1) + (m +

n)po + qo V¥ n > 0. (Note that a f(m) = 0 and we want q, to be a free parameter.
So we want f(m) = 0.)

2 Real-analytic functions

It turns out (Frobenius’ theorem) that > a,t" and > b,t" converge on (—R, R) if > p,t"
and " ¢,t" do. Here is the proof: First fix r < R. We see that |p;| + |gx| < &.

1. f(mg +n) # 0 (In particular, if m; — ms is not a non-negative integer):
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Again, we define u,, with uy = |ao| satisfying
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We see that u,, > |a,| by induction. Thus u,, = u,_; ((n — 1)/nr+ C/n). Thus
lim o = 1. Thus " u,(r — €)" converges and by the Weierstrass-M test, > a,t"

converges uniformly on [r — €,7 + ¢] and since r, € are arbitrary, we are done.
We claim that if m; — my is not an integer, then these two solutions are linearly
independent (HW).

2. my = mgy + ny where ng is a non-negative integer: The above argument works for
my. Now we try yo = t" > b,t" + C'ln(t)y;. Substituting into the ODE we get
(after simplification using the fact that y; is a solution)
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where f(m+n) =(m+n)(m+n—1)+ (m+n)py+ g Vn > 0. For n = 0 we see that
f(m) = 0. Now we have two cases.



1. my = mg + ng where ny > 1: The above argument works for m; to produce a
solution y;. For b,,, we see that
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Thus defining a;, = 0 = b, for negative k,
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For n = ny we see that
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and hence we can solve for C' (because inductively, we can solve for b;, up to no—1).
By the way, 2m; — 1 +py # 0 because by assumption the quadratic f(z) does NOT
have multiple roots and hence f'(m;) = 2m; — 1+ py # 0. Now f(m +n) # 0 for
n > ng. Thus we can solve for all the other b,. We now have to prove that ) b,t"
converges absolutely and uniformly on [—(r — €),r + ¢| where r < R and € > 0
are arbitrary. Note that |a;| < & for all k > 0. Hence for all sufficiently large n
(> N) we see that
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As usual, we define uy = |by| > 0 (without loss of generality) and u,, to satisfy
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Note that u,, > |b,| > 0 inductively and that u,, > % Vn > N+ 1. Now we see

that
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To be continued....
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