
1 Recap
1. Uniqueness.

2. Statement of Picard’s theorem (first version).

2 General existence and uniqueness theory
Theorem 1. Let D ⊂ Rn+1 be a domain and let f : D → Rn be continuous (jointly) on D and
Lipschitz in y on D with Lipschitz constant α. Let R = B̄b(y0) × [t0 − a, t0 + a] ⊂ D. Let
M = maxR |f | and h = min

(
a, b

M
, 1
2α

)
. In the initial-value-problem (IVP) y′ = f(y, t) with

y(t0) = y0 has a unique solution on [t0 − h, t0 + h].

Proof.

yn+1(t) = y0 +

∫ t

t0

f(yn(s), s)ds (1)

with y0(t) = y0. Suppose Sn is the set of all t ∈ [t0 − a, t0 + a] such that (yn(t), t) ∈
B̄b(y0)× [t0 − h, t0 + h]. Note that Sn is not empty. We claim that [t0 − h, t0 + h] ⊂ Sn.
We shall prove this claim by induction on n. Clearly it is true for n = 0. Suppose it is
true until n− 1. Then yn(t)− y(t0) =

∫ t

t0
f(yn−1(s), s)ds. Thus ∥yn(t)− y0∥ ≤ Mh ≤ b if

t ∈ [t0 − h, t0 + h] ⊂ Sn−1. Thus it is true for n.
As mentioned earlier,

∥yn+1(t)− yn(t)∥ ≤ α|
∫ t

t0

∥yn − yn−1∥ds|, (2)

provided (yn(s), s), (yn+1(s), s) ∈ D for all s lying between t0 and t.
As a consequence on [t0 − h, t0 + h],

∥yn+1 − yn∥ ≤ α

∫ t

t0

∥yn − yn−1∥ds

⇒ ∥yn+1 − yn∥C0[t0−h,t0+h] ≤ αh∥yn − yn−1∥C0[t0−h,t0+h]

≤ 1

2
∥yn − yn−1∥C0[t0−h,t0+h] ≤

1

2n
∥y1 − y0∥C0[t0−h,t0+h]. (3)

Since yn = y0 + (y1 − y0) + (y2 − y1) . . ., we see that by the Weierstrass M -test, this
series converges uniformly to some limit y which is a continuous function. Since
f is continuous,

∫ t

t0
f(yn(s), s)ds converges to

∫ t

t0
f(y(s), s)ds by uniform convergence

(why?). Thus the limiting y satisfies y = y0 +
∫ t

t0
f(y(s), s)ds. By the fundamental

theorem of calculus, y is differentiable and satisfies the IVP.

Theorem 2. In the above theorem, h can be chosen to be min
(
a, b

M

)
.



Proof. Indeed, we claim that ∥yn− yn−1∥ ≤ M
α

|(α(t−t0)))n|
n!

for all n ≥ 1. Indeed, for n = 1,
it is easy. Assume inductively that it is true for 1, 2, . . . , n. Then

∥yn+1 − yn∥ ≤ α

∫ t

t0

∥yn − yn−1∥ds

≤ α

∫ t

t0

M

α

|(α(s− t0)))
n|

n!
ds

=
M

α

|(α(t− t0)))
n+1|

(n+ 1)!
. (4)

Since the series
∑

n
M
α

(αh))n

n!
converges (why?), by the Weierstrass M -test, we are done

as above (why?)

We now wish to characterise the maximal interval of existence. Here is a version
of such a theorem (we are not stating it in the greatest generality possible but the
technique of proof is generally applicable).

Theorem 3. Let f : Rn × R → Rn be locally Lipschitz. There exists a unique differentiable
solution y : (h1, h2) → Rn to y′ = f(y(t), t) with y(t0) = y0 where h1 < t0 < h2 are
extended real numbers such that (h1, h2) is the maximal interval of existence (what does this
mean?). Moreover, if h2 is finite, there exists a sequence tn → h2 (with tn ∈ (h1, h2)) such that
∥y(tn)∥ → ∞ and likewise for h1.

In other words, as long as y stays bounded, we can “continue" further. Equivalently,
being unbounded is the only thing that can go wrong (this is in stark contrast to partial
differential equations where higher order problems can play a role).

Proof. There surely is a solution on [t0 − h, t0 + h] for some h > 0. Define h2 as the
supremum of all a2 such that there is a solution on [t0 − h, a2]. By uniqueness there
is a unique solution on [t0 − h, h2). Likewise we can define h1 and come up with the
maximal interval of existence. To be continued....
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