1 Recap

1. Picard’s theorem (second version).

2. Maximal interval of existence (stated the theorem and proved it exists).

2 General existence and uniqueness theory

Theorem 1. Let f : R™ x R — R™ be locally Lipschitz. There exists a unique differentiable
solution y : (hy,he) — R™ toyy/ = f(y(t),t) with y(ty) = yo where hy < ty < hy are
extended real numbers such that (hy, hy) is the maximal interval of existence (what does this
mean?). Moreover, if hs is finite, there exists a sequence t, — ho (with t,, € (hy, he)) such that
|ly(tn)|| — oo and likewise for hy.

Proof. Cont’d..... Suppose h, is finite and |y(¢)|| < C on [ty, he). (Why is this the
negation of the hypothesis in the theorem?) Then since y' = f(y(t),t), we see that
|y'[] < C on [ty, he)- why? (note that the constant C' can vary from inequality to
inequality) As a consequence, [y(s) — y(¢)|| < [¢ — s|C' and hence y(hs) = lim,_,;,— y(t)

exists (why?). Because of uniform convergence, from y(t) = yo+ f:o f(y, s)ds we see that

y(ha) = yo + ftzz f(y, s)ds. By the fundamental theorem of calculus, y is differentiable
at hy and satisties the ODE there. Thus we can extend the solution further using the
existence theorem and arrive at a contradiction for maximality. O

We can apply this result to prove that non-autonomous linear systems y' = A(t)y +
B(t) with y(ty) = yo have unique solutions on (—oco, ) if A,b are C' on R. Indeed,
f(y,t) = A(t)y + B(t). Now f is C' and hence locally Lipschitz. Thus if there is
a solution, it is unique. Now by the existence theorem, the solution exists on some
maximal interval (hy, hy). Note that if either of them (WLog hs) is finite, then since
ly®ll < C+ LAy + [B(s)Nds < C(1+ [ lly(s)]) on [to, h), by Gronwall,
y is bounded and hence by the previous theorem, we have a contradiction.

We can actually prove a more general existence theorem due to Peano.

Theorem 2. Let f be continuous on a rectangle R = By(yo) X [to — a,to + a]. Then there
exists a solution (possibly non-unique) toy' = f(y,t) with y(to) = yo on [to — h, to + h] where
h = min(a,b/M) where M = maxg |f|.

There are two proofs using approximations.

1. Using actual solutions to an approximation of the problem: Using the Stone-
Weierstrass theorem (Let X be compact and Hausdorff. Let A be a subalgebra of
C(X,R) which contains a non-zero constant function. Then A is dense in C(X, R)
iff it separates points), we see that there is a sequence of smooth functions f,, — f
on R uniformly.

2. Using approximate solutions to the original problem

Theorem 3. Let f be continuous on a rectangle R = By(yo) X [to — a,to + a]. Then there
exists a solution (possibly non-unique) toy' = f(y,t) with y(to) = yo on [to — h, to + h| where
h = min(a,b/M) where M = maxg | f]|.



There are two proofs using approximations.

1. Using actual solutions to an approximation of the problem: Using the Stone-
Weierstrass theorem (Let X be compact and Hausdorff. Let A be a subalgebra of
C(X,R) which contains a non-zero constant function. Then A is dense in C' (X, R)
iff it separates points), we see that there is a sequence of smooth functions f,, — f
on R uniformly. (Another possibility is convolution with a nice function but that
approximates only on a slightly smaller domain.) Now solve y;, = f,(yn,t) with
yn(to) = yo and (y,(t),t) € By(yo) X [to — hn, to+ hy] where h,, = min(a, b/M,,) (this
property follows from the proof). Note that ||y, || < M,. Thus ||y, (t) — y.(s)| <
M,||t — s|| for all t,s € [ty — hp,to + hy]. Given € > 0, we can choose n large
enough so that |, — h| < e. Thus for all such n, y, is uniformly equicontinuous
and uniformly bounded on I. = [ty — h + €,ty + h — €]. To be continued.....
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