
1 Recap
1. Picard’s theorem (second version).

2. Maximal interval of existence (stated the theorem and proved it exists).

2 General existence and uniqueness theory
Theorem 1. Let f : Rn × R → Rn be locally Lipschitz. There exists a unique differentiable
solution y : (h1, h2) → Rn to y′ = f(y(t), t) with y(t0) = y0 where h1 < t0 < h2 are
extended real numbers such that (h1, h2) is the maximal interval of existence (what does this
mean?). Moreover, if h2 is finite, there exists a sequence tn → h2 (with tn ∈ (h1, h2)) such that
∥y(tn)∥ → ∞ and likewise for h1.

Proof. Cont’d..... Suppose h2 is finite and ∥y(t)∥ ≤ C on [t0, h2). (Why is this the
negation of the hypothesis in the theorem?) Then since y′ = f(y(t), t), we see that
∥y′∥ ≤ C on [t0, h2)- why? (note that the constant C can vary from inequality to
inequality) As a consequence, ∥y(s)− y(t)∥ ≤ |t− s|C and hence y(h2) := limt→h−

2
y(t)

exists (why?). Because of uniform convergence, from y(t) = y0+
∫ t

t0
f(y, s)dswe see that

y(h2) = y0 +
∫ h2

t0
f(y, s)ds. By the fundamental theorem of calculus, y is differentiable

at h2 and satisfies the ODE there. Thus we can extend the solution further using the
existence theorem and arrive at a contradiction for maximality.

We can apply this result to prove that non-autonomous linear systems y′ = A(t)y+
B(t) with y(t0) = y0 have unique solutions on (−∞,∞) if A, b are C1 on R. Indeed,
f(y, t) = A(t)y + B(t). Now f is C1 and hence locally Lipschitz. Thus if there is
a solution, it is unique. Now by the existence theorem, the solution exists on some
maximal interval (h1, h2). Note that if either of them (WLog h2) is finite, then since
∥y(t)∥ ≤ C +

∫ t

t0
(∥A(s)∥∥y(s)∥+ ∥B(s)∥)ds ≤ C(1 +

∫ t

t0
∥y(s)∥) on [t0, h2), by Gronwall,

y is bounded and hence by the previous theorem, we have a contradiction.
We can actually prove a more general existence theorem due to Peano.

Theorem 2. Let f be continuous on a rectangle R = B̄b(y0) × [t0 − a, t0 + a]. Then there
exists a solution (possibly non-unique) to y′ = f(y, t) with y(t0) = y0 on [t0 − h, t0 + h] where
h = min(a, b/M) where M = maxR |f |.

There are two proofs using approximations.

1. Using actual solutions to an approximation of the problem: Using the Stone-
Weierstrass theorem (Let X be compact and Hausdorff. Let A be a subalgebra of
C(X,R) which contains a non-zero constant function. Then A is dense in C(X,R)
iff it separates points), we see that there is a sequence of smooth functions fn → f
on R uniformly.

2. Using approximate solutions to the original problem

Theorem 3. Let f be continuous on a rectangle R = B̄b(y0) × [t0 − a, t0 + a]. Then there
exists a solution (possibly non-unique) to y′ = f(y, t) with y(t0) = y0 on [t0 − h, t0 + h] where
h = min(a, b/M) where M = maxR |f |.



There are two proofs using approximations.

1. Using actual solutions to an approximation of the problem: Using the Stone-
Weierstrass theorem (Let X be compact and Hausdorff. Let A be a subalgebra of
C(X,R) which contains a non-zero constant function. Then A is dense in C(X,R)
iff it separates points), we see that there is a sequence of smooth functions fn → f
on R uniformly. (Another possibility is convolution with a nice function but that
approximates only on a slightly smaller domain.) Now solve y′n = fn(yn, t) with
yn(t0) = y0 and (yn(t), t) ∈ B̄b(y0)× [t0−hn, t0+hn] where hn = min(a, b/Mn) (this
property follows from the proof). Note that ∥y′n∥ ≤ Mn. Thus ∥yn(t) − yn(s)∥ ≤
Mn∥t − s∥ for all t, s ∈ [t0 − hn, t0 + hn]. Given ϵ > 0, we can choose n large
enough so that |hn − h| < ϵ. Thus for all such n, yn is uniformly equicontinuous
and uniformly bounded on Iϵ = [t0 − h+ ϵ, t0 + h− ϵ]. To be continued.....
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