
1 Recap
1. Maximal interval.

2. First proof of Peano - construction of yn.

2 General existence and uniqueness theory
Theorem 1. Let f be continuous on a rectangle R = B̄b(y0) × [t0 − a, t0 + a]. Then there
exists a solution (possibly non-unique) to y′ = f(y, t) with y(t0) = y0 on [t0 − h, t0 + h] where
h = min(a, b/M) where M = maxR |f |.

Proof. There are two proofs but the first one proves something slightly weaker, i.e.,
existence on (t0 − h, t0 + h).

1. Made a mistake. Will do the next time.

2. Using approximate solutions to the original problem: The idea is to use the Euler
method to produce approximate solutions and hope that they converge (using
Arzela-Ascoli again). Here is the precise definition of an ϵ-approximate solution:
Let f be defined and continuous on a domain D ⊂ Rn+1. An ϵ-approximate
solution on I = [t0 − a, t0 + a] is a function y : I → Rn such that

(a) (t, y(t)) ∈ D for all t ∈ I .
(b) y is C1 on I except possibly for a finite set S ⊂ I (but it has left and right

derivatives on S).
(c) ∥y′ − f(y, t)∥ ≤ ϵ on I ∩ Sc.

We produce ϵ-approximate solutions on [t0−h, t0+h] for h = min(a, b/M) where
f is continuous onR = B̄b(y0)×[t0−a, t0+a] andM = maxR f : We shall construct
it on [t0, t0 + h] (and similar construction works on the other side). Divide the
interval into subintervals and on each subinterval [tk, tk+1]we give a linear approx-
imation using the Euler method, i.e., Solve z′ = f(zk−1, tk−1), z(tk−1) = zk−1 to get
zk = z(tk) = zk−1+f(zk−1, tk−1)(tk− tk−1). But we need to choose the subintervals
carefully so that these piecewise linear solutions all lie in R. Firstly, since f is uni-
formly continuous on R, ∥f(y, t)−f(ỹ, t̃)∥ < ϵ whenever ∥t− t̃∥+∥y− ỹ∥ ≤ δ < b.
Define y(t) as the piecewise linear function given by z(t) on each interval. We
shall divide the interval into equal parts of size at most δ1 which we shall choose
later (it will turn out that δ1 = min(δ, δ/M) works).
First we prove by induction on i that (y(t), t) ∈ R on [ti−1, ti]. For i = 1,
∥y(t) − y(t0)∥ = |t − t0|∥f(y0, t0)∥ ≤ Mδ1 < δ < b and hence it is true for i = 1.
Assume truth for 1, 2, . . . , i. Then for i+1, ∥y(t)−y(t0)∥ ≤ ∥y(t)−y(ti)∥+∥y(ti)−
y(ti−1)∥+ . . . ≤ M∥t− t0∥ ≤ Mh ≤ b. Thus we are done.
Using the same method one can show that (y(t), t) is an ϵ-approximate solution.
We have produced approximate solutions. Now choose ϵn = 1

n
. The correspond-

ing approximate solutions yn are uniformly bounded and uniformly equicontin-
uous (why?) and hence by Arzela-Ascoli, a subsequence (that we shall abuse



notation and continue to denote as) yn converges uniformly to a continuous func-
tion y. Uniform convergence now implies that y is a solution to the IVP. (Why?)

The next order of business to see how the solution depends on initial data as well as
on other parameters that may occur in the differential equation (like physical constants
for instance).

Theorem 2. Let R be a “rectangle" as in Peano’s theorem. Let f, f̃ be continuous on R, and
uniformly Lipschitz in y with constantsα, α̃. Let y, ỹ be the solutions of y′ = f(y, t), y(t0) = y0,
and ỹ′ = f̃(ỹ, t), ỹ(t̃0) = ỹ0 in some closed interval I (containing t0, t̃0 and contained in R) of
length |I|. Then

max
I

∥y(t)− ỹ(t)∥ ≤ emin(α,α̃)|I|
(
∥y0 − ỹ0∥+ |I|max

R
∥f − f̃∥+max(∥f∥maxR , ∥f̃∥maxR)|t0 − t̃0|

)
(1)

Proof.

y − ỹ = y(t0)− ỹ(t0) +

∫ t

t0

(f(y(s), s)− f̃(ỹ(s), s))ds

= y(t0)− ỹ(t̃0) + ỹ(t̃0)− ỹ(t0) +

∫ t

t0

(f(y(s), s)− f̃(ỹ(s), s))ds

⇒ ∥y − ỹ∥ ≤ ∥y(t0)− ỹ(t̃0)∥+ ∥ỹ(t̃0)− ỹ(t0)∥+
∫ t

t0

∥f(y(s), s)− f̃(ỹ(s), s)∥ds

≤ ∥y0 − ỹ0∥+max
I

∥ỹ′∥|t0 − t̃0|+
∫ t

t0

∥f(y(s), s)− f̃(ỹ(s), s)∥ds

≤ ∥y0 − ỹ0∥+max
R

∥f̃∥|t0 − t̃0|+
∫ t

t0

∥f(y(s), s)− f̃(y(s), s)∥ds+
∫ t

t0

∥f̃(y(s), s)− f̃(ỹ(s), s)∥ds

≤ ∥y0 − ỹ0∥+max
R

∥f̃∥|t0 − t̃0|+ |I|max
R

∥f − f̃∥+ α̃

∫ t

t0

∥y − ỹ∥ds. (2)

Thus by Gronwall

∥y − ỹ∥ ≤ eα̃|I|

(
∥y0 − ỹ0∥+max

R
∥f̃∥|t0 − t̃0|+ |I|max

R
∥f − f̃∥

)
(3)

Interchanging the roles of y, ỹ, we are done.

As a consequence, the solution depends continuously on the initial data and pa-
rameters involved. We can prove more. In fact, we can prove that if f is smooth, so is y.
The rough idea is (for proving differentiability) to first pretend differentiability holds,
deduce the ODE for the derivative, write an ODE for the difference quotient, subtract
these two ODE and use the Gronwall inequality to deduce that indeed the difference
quotient converges to the (hypothetical) derivative.
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