
1 Recap
1. Second proof of Peano. First proof needed to be corrected: We had produced

yn on [t0 − hn, t0 + hn] and noted that hn → h. Now consider the intervals
In = [t0−h+ 1

n
, t0+h+ 1

n
]. Fix Im (for large enough m) and consider the sequence

yn. It is bounded and uniformly equicontinuous. Hence, by Arzela-Ascoli, there
exists a uniformly convergent subsequence yk1 (converging to Y1). Now on Im+1,
there exists a subsequence yk2 of yk1 that converges to Y2. Repeat this process.
Note that Y2 agrees with Y1 on Im and so on. Thus we have a limiting continuous
function y on I∞ = (t0 − h, t0 + h) which satisfies the IVP (by FTC). This result is
slightly weaker than the one proven by the second method.

2. Stated continuous dependence on parameters.

2 General existence and uniqueness theory

Theorem 1. Let R be a “rectangle" as in Peano’s theorem. Let f, f̃ be continuous on R, and
uniformly Lipschitz in y with constantsα, α̃. Let y, ỹ be the solutions of y′ = f(y, t), y(t0) = y0,
and ỹ′ = f̃(ỹ, t), ỹ(t̃0) = ỹ0 in some closed interval I (containing t0, t̃0 and contained in R) of
length |I|. Then

max
I

∥y(t)− ỹ(t)∥ ≤ emin(α,α̃)|I|
(
∥y0 − ỹ0∥+ |I|max

R
∥f − f̃∥+max(∥f∥maxR , ∥f̃∥maxR)|t0 − t̃0|

)
(1)

Proof.

y − ỹ = y(t0)− ỹ(t0) +

∫ t

t0

(f(y(s), s)− f̃(ỹ(s), s))ds

= y(t0)− ỹ(t̃0) + ỹ(t̃0)− ỹ(t0) +

∫ t

t0

(f(y(s), s)− f̃(ỹ(s), s))ds

⇒ ∥y − ỹ∥ ≤ ∥y(t0)− ỹ(t̃0)∥+ ∥ỹ(t̃0)− ỹ(t0)∥+
∫ t

t0

∥f(y(s), s)− f̃(ỹ(s), s)∥ds

≤ ∥y0 − ỹ0∥+max
I

∥ỹ′∥|t0 − t̃0|+
∫ t

t0

∥f(y(s), s)− f̃(ỹ(s), s)∥ds

≤ ∥y0 − ỹ0∥+max
R

∥f̃∥|t0 − t̃0|+
∫ t

t0

∥f(y(s), s)− f̃(y(s), s)∥ds+
∫ t

t0

∥f̃(y(s), s)− f̃(ỹ(s), s)∥ds

≤ ∥y0 − ỹ0∥+max
R

∥f̃∥|t0 − t̃0|+ |I|max
R

∥f − f̃∥+ α̃

∫ t

t0

∥y − ỹ∥ds. (2)

Thus by Gronwall

∥y − ỹ∥ ≤ eα̃|I|

(
∥y0 − ỹ0∥+max

R
∥f̃∥|t0 − t̃0|+ |I|max

R
∥f − f̃∥

)
(3)

Interchanging the roles of y, ỹ, we are done.



As a consequence, the solution depends continuously on the initial data and pa-
rameters involved. We can prove more. In fact, we can prove that if f is smooth, so is y.
The rough idea is (for proving differentiability) to first pretend differentiability holds,
deduce the ODE for the derivative, write an ODE for the difference quotient, subtract
these two ODE and use the Gronwall inequality to deduce that indeed the difference
quotient converges to the (hypothetical) derivative.

We shall now prove that if f and y0 = y(0) are C1 functions of v ∈ Rm then so is y.
All we need to do is to prove that ∂y

∂vi
exists and is continuous for all i. Fix i and call vi as

w. We need to identify the (hypothetical) derivative yw and prove that indeed it is the
correct derivative. To this end, consider the following ODE obtained by differentiating
the original IVP. (Later we will show that u = yw.) Let’s work with one function y (as
opposed to a vector) for simplicity. The proof doesn’t change much otherwise.

u′ = fyu+ fw

u(0) = (y0)w. (4)

Now this ODE is a linear system for u. So it has a unique differentiable (in t) solution
for as long as the right-hand-side makes sense. Moreover, the right-hand-side is con-
tinuous and hence u is continuous jointly in t, v.
Consider the equation satisfied by the difference-quotient∆hy = y(t,v1,...,w+h,...)−y(t,v1,...,w,...)

h
.

(∆hy)
′ =

f(y(t, . . . , w + h, . . .), t, . . . , w + h, . . .)− f(y(t, . . . , w, . . .), t, . . . , w, . . .)

h
∆hy(0) = ∆h(y0). (5)

Now subtract to get

(∆hy − u)′ =
f(y(t, v) + h∆hy, t, . . . , w + h, . . .)− f(y(t, v), t, v)

h
− fyu− fw (6)

∆hy(0)− u(0) = ∆h(y0)− (y0)w (7)

Thus

∥∆hy − u∥ ≤ ∥∆h(y0)− (y0)w∥

+

∫ t

0

∥∥∥∥∥f(y(s, v) + ∆hy, s, . . . , w + h, . . .)− f(y(s, v), s, v)

h
− fyu− fw

∥∥∥∥∥ds
≤ ∥∆h(y0)− (y0)w∥+

∫ t

0

(
∥fy(ξ)− fy∥∥∆hy∥

+C∥∆hy − u∥+ ∥fw(ξ)− fw∥
)
ds (8)

To be continued....

2


	Recap
	General existence and uniqueness theory
	A little bit about numerical methods

