
1 Recap
1. “Definition" of ODE. Examples/Counterexamples (including the “multiply by

the inverse of the guessed solution" trick).

2. Examples coming from real life.

2 Linear systems of ODE
Consider y′′ = y on (a, b), how does one solve it? One possibility is to try y = Aex+Be−x.
It works but how do we know that this is the general solution? How did we guess
at this solution in the first place? The usual way to do this in physics is the “energy
method". Multiplying by 2y′ on both sides, ((y′)2)′ = (y2)′ and hence (y′)2 − y2 = E

(Conservation of energy). Thus y′ = ±
√
E + y2. We can now attempt to solve this

using separation as usual. We observe two things:
1. The presence of a conserved quantity allowed us to express the solution as an in-

tegral. It is not a coincidence that the equation has a symmetry (time-translation).
A deep theorem called Noether’s theorem tells us that every symmetry gives rise
to a conserved quantity. If you have “enough" number of conserved quantities,
you can express the solution using integrals. (Such a system is called an inte-
grable system.) Unfortunately, just because you write something as integral does
not mean you can evaluate it using “elementary functions". Thankfully, we know
when one can solve integrals. This topic is called differential Galois theory.

2. Despite the conserved quantity above, the integrals involved are rather hairy.
Another approach to this problem is as follows: Introduce a variable v = y′. Then
v′ = y, v = y′ is equivalent to the above equation. The cost is that now we have a
system of ODE as opposed to a single one. More generally, a linear inhomogeneous
non-constant coefficient/non-autonomous system is y⃗′ = A(t)y⃗(t) + F⃗ (t) where A(t)

is a matrix-valued function and F⃗ (t) is a given function. We shall mostly deal with
constant matrices A (linear inhomogeneous autonomous systems). For now, let us
assume F⃗ (t) = 0, i.e., y⃗′ = Ay⃗ (a linear homogeneous autonomous system). There are
two ways of trying to solve these kinds of equations (that we shall illustrate with the
above example):

1. Note that if the system was “decoupled" (that is, v′ = av, y′ = bv), we could
have easily solved it. The idea is to change variables to get it to this form. Note
that if this was a linear system of equations (not differential), then we would
have simply added and subtracted equations. That is what we shall do. Indeed,
(v + y)′ = (y + v), and (v − y)′ = −(v − y). Thus v + y = Aex and v − y = Be−x.
Thus we are done. More generally, if y⃗′ = Ay⃗, a general change of variables is
z⃗ = P y⃗ where P is an invertible matrix. Then z⃗′ = PAP−1z⃗. This system is
decoupled if PAP−1 = D is a diagonal matrix, i.e., when A is diagonalisable!
(the columns of P−1 are a basis of eigenvectors of A!) By the way, this is why you
should care about eigenvalues and eigenvectors. Unfortunately, not everything is
diagonalisable and even if it is, the eigenvalues can be complex. So stay tuned....



2. For y′ = ay, we know the solution is y = eaxy0. If we can define eAt, then is
y = eAty0 the solution? Indeed, (e−Aty)′ = −Ae−Aty + e−Aty′ = 0 and hence
y = eAty0. We shall take up this approach too. By the way, computing eAt

on a quantum computer efficiently is a big deal. In fact, quantum computers
were originally envisaged by Feynman precisely to do this. This is called the
Hamiltonian simulation problem.

2.1 Decoupling strategy
Let’s pursue the first strategy. Prior to that, here is a useful easy result (HW):
First, if define z(t) = u(t) +

√
−1v(t) : (a, b) → C to be differentiable if u, v are so.

We can then prove the product and quotient rules. Moreover, define e(x+
√
−1y)t =

ext(cos(yt) +
√
−1 sin(yt)). Then we can prove that this function is differentiable and

its derivative is (x+
√
−1y)e(x+

√
−1y)t.

Suppose y⃗′ = Ay⃗. Firstly, the set of real differentiable functions satisfying this
equation form a subspace of the vector space of differentiable functions f⃗ : R → Rn

(why?) The same holds for the set of complex solutions too. In fact, a complex function
solves it iff its real and imaginary parts are solutions (why?). Here is a lemma.

Lemma 2.1. The space of real solutions V is finite-dimensional iff the space of complex solutions
W is so. Moreover, the real and complex dimensions coincide.

Proof. Firstly, a space is finite-dimensional iff there exists an integer N such that every
collection of N +1 vectors linearly dependent iff there exists a finite set of vectors such
that every vector is a linear combination.
Suppose V is finite-dimensional with dimension n and a basis u1(t), . . . , un(t). Then if
z(t) is a solution, z(t) =

∑
i ciui(t)+

√
−1

∑
i biui(t) =

∑
i(ci+

√
−1bi)ui(t) (why?). Thus

every element of W is a linear combination of ui(t) and hence W is finite-dimensional.
In fact, ui(t) are complex linearly independent (why?) and hence the complex dimen-
sion is n.
Suppose W is finite-dimensional with dimension n and a basis z1(t), . . . , zn(t). Then
the real and imaginary parts of zi(t) are solutions and hence every real solution is
finite real linear combination of at most 2n vectors. Thus V is finite-dimensional. The
previous arguments now show that its dimension is that of W .

Now supposeP is a constant invertible matrix, then z⃗ = P y⃗ satisfies z⃗′ = PAP−1z⃗. If
A is diagonalisable, that is, if PAP−1 = D where D is a diagonal matrix of eigenvalues
(possibly complex), then z⃗′ = Dz⃗. Thus (zie

−Diit)′ = 0, i.e., zi = (zi)0e
Diit. The

solutions for z⃗ form an n-dimensional complex vector space (why?) Since y⃗ is a linear
combination of z⃗, y⃗ also forms an n-dimensional complex vector space. Thus the space
of real solutions is also n-dimensional. We shall prove later that regardless of the
diagonalisability of A or the lack thereof, this fact is still true.
Moreover, if y(0) is real, then y(t) is real. Indeed, there exists some complex solution
y = P−1z where zi = e−λit(zi)0. Now the real and imaginary parts of y are still
solutions. The imaginary part has 0 initial data. From the explicit formula, we see that
any solution with zero initial data is identically zero. Hence we are done.
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