

1 Recap

1. Stated the theorem of the Jordan canonical form and illustrated with a simple 2×2 example.
2. Proved that $y' = Ay$ has an n -dimensional space of solutions.

2 Linear systems of ODE

2.1 Exponentiation

We shall define a notion of the matrix exponential e^A for a square matrix A . To this end, we recall the definition of norm $\|\cdot\| : V \rightarrow \mathbb{R}$ on a real/complex vector space V :

1. $\|v\| \geq 0$ with equality iff $v = 0$.
2. $\|av\| = |a|\|v\|$.
3. $\|v + w\| \leq \|v\| + \|w\|$.

An obvious example of a norm is one that comes from an inner product: $\|v\|^2 = \langle v, v \rangle$. However, not all norms arise this way (for instance, the "taxi-cab" norm on \mathbb{R}^n : $\|v\| = \sum_i |v_i|$). If indeed a norm arises from an inner product, it is easy to see that the polarisation identity holds: $\|v + w\|^2 + \|v - w\|^2 = 2\|v\|^2 + 2\|w\|^2$. If this identity holds, then indeed $\langle v, w \rangle := \frac{\|v+w\|^2 - \|v-w\|^2}{2}$ can be proven to be an inner product.

Two norms are said to be equivalent if there exists a constant $C > 0$ such that $\frac{1}{C}\|v\|_1 \leq \|v\|_2 \leq C\|v\|_1$ for all vectors v . One can prove that on a finite-dimensional vector space, all norms are equivalent to each other.

On the space of $n \times n$ real/complex matrices there are natural norms. One is the Hilbert-Schmidt norm: $\|A\|_{HS}^2 = \sum_i |A_{ij}|^2$. Another is the operator norm $\|A\|_{op} = \max_{|v|=1} \|Av\|$. These norms are sub-multiplicative, i.e., $\|AB\| \leq \|A\|\|B\|$ (why?)

Given these notions, on a normed vector space, we can talk about convergence of sequences: $a_n \rightarrow a$ if $\|a_n - a\| \rightarrow 0$ in the sense of real numbers. We have the usual properties of convergence. In addition, on \mathbb{R}^n or \mathbb{C}^n (or for that matter, any finite-dimensional vector space with a basis), $a_n \rightarrow a$ iff the individual components converge (why?). We now make the following definition.

Definition: Let A be a complex/real $n \times n$ matrix. Define $e^A := I + A + A^2/2! + \dots$

Lemma: This series converges.

Proof: We shall prove that this series is Cauchy. Then each entry forms a Cauchy sequence (why?) and hence by the completeness of reals, it converges. Indeed, $\left\| \sum_{k=n}^m \frac{A^k}{k!} \right\| \leq \sum_{k=n}^m \frac{\|A^k\|}{k!} \leq \sum_{k=n}^m \frac{\|A\|^k}{k!}$ (why?) Now we know that $e^{\|A\|}$ exists as a convergent series (why?) and hence we are done (why?) \square

We have a couple of properties (most are easy to prove):

1. Suppose $B = PAP^{-1}$. Then $e^B = Pe^A P^{-1}$.

2. If A is block diagonal with diagonal entries A_i , then so is e^A with diagonal entries e^{A_i} .
3. If $AB = BA$, then $(A + B)^m = \sum \binom{m}{k} A^k B^{m-k}$ and $e^{A+B} = e^A e^B$. (In general, this is not true. In fact, the quest to find a relationship between e^{A+B} and $e^A e^B$ leads to the theory of Lie algebras. (The Baker-Campbell-Hausdorff formula.)
4. e^A is invertible and $(e^A)^{-1} = e^{-A}$.
5. $\|e^A\| \leq e^{\|A\|}$.
6. If $J = \lambda I + N$ is a Jordan block, then $e^J = e^\lambda e^N = e^\lambda (I + N + N^2/2! + \dots + N^{n-1}/(n-1)!)$ because $N^n = 0$. As a consequence, $\|e^{tA}\| \leq ke^{-rt}$ for all $t \geq 0$ if the real parts of all eigenvalues of A are strictly negative. (HW)

An interesting point: If we guess at 2 linearly independent solutions to $y'' = -k^2y$, we are done because of the theorems above. We can try $\sin(kx)$, $\cos(kx)$ and they work. This raises a question: Suppose u_1, u_2 are two differentiable functions, when can we say that they are linearly independent? Indeed, suppose $c_1 u_1 + c_2 u_2 = 0$, then $c_1 u'_1 + c_2 u'_2 = 0$. Thus this system does not have a non-trivial solution if $\det \begin{pmatrix} u_1 & u_2 \\ u'_1 & u'_2 \end{pmatrix} \neq 0$. More generally, u_1, \dots, u_n are linearly independent if a similar determinant involving higher derivatives does not vanish (what determinant?) This determinant is called the Wronskian.