1 Recap

1. Determinant of exponentials.

2. Solution of homogeneous and inhomogeneous autonomous problems (Duhamel).

2 Linear systems

We shall now discuss only uniqueness (existence will be considered later) for a non-
autonomous system y' = A(t)y + B(t) where A(t), B(t) are continuous functions on
la, b] with y(ty) = yo wheret, € [a, b]. Withoutloss of generality, ¢, = 0 (why?). Suppose
u, v are differentiable solutions with u(t¢) :tv(to), then (v —v)" = A(t)(u — v). Thus

t

u—v= / A(u —v)ds. Thus ||ju — v|| = || / A(u — v)ds. Now we have the following
to to

lemma.

Lemma 2.1. Let f : [a,b] — R™ be a continuous function. Then || LO s)ds|| < fto I f(s)||ds.

Proof. Indeed, let v(t) = [} f(s)ds. Then [[v|®> = v. [ f(s)ds = [, v s)ds <
fto o1 £(s)|ds = ||v ||fto ||f )||ds. Hence we are done. O

Thus, ||[u —v|| < ftto |A(®)]|||w — v||. If A(t) is continuous, then so is ||A(t)|| and
thus [|A(?)|| < C on [a,b]. Using Gronwall’s inequality (HW problem), we see that
|u —v|| < et |lu —v||(ty) = 0. Hence u = v. O

For the inhomogeneous non-autonomous case, y' = A(t)y + B(t), Suppose we solve
the homogenous system y' = A(t)y with y(ty) = e;(ty) (note that we already know
uniqueness, and we are assuming existence), we get a bunch of solutions that are
linearly independent (why?) and if arrange them in a column, we get an invertible
matrix ®(t,ty). Let W(¢) be any invertible matrix satisfying ¥’ = A(¢)¥. Note that
(t, tg) = WU(t)V (o)™ (why?) As a consequence, y(t) = ®(t,ty)y(to) and hence the
space of solutions is n-dimensional.

We claim that the solution to v/ = A(t)y + B(t) is y(t) = ®(¢,to)yo + ftz O(t,s)B(s)ds
akin to the Duhamel formula for the autonomous case.

Proof. Let’s differentiate this formula and check that it satisfies the equation (it obvi-
ously satisfies the initial conditions).

t

y = AD(t, to)yo + % /t O(t,s)B(s)ds = Ay + \If’/ U(s) ' B(s)ds

to to

= AD(t,to)yo + AV(t) /t U 1(s)B(s)ds = Ay. (1)

to



3 Real-analytic functions

The method of exponentiation tells us that it might be prudent to try to solve ODE
using power series. To this end, we make a definition:

Def: A function f : (a,b) — R is said to be real-analytic at ¢, if there exists a § > 0
such that f(t) = > po, ck(t — to)* converges for all ¢ € (ty — d,%o + §). It is said to be
real-analytic on (a, b) if it is real-analytic at every point in (a, b).

Before we come up with examples, here are some important facts from analysis:

1. The Ratio test: Let L = limsup 42+ and [ be the liminf. If L < 1 then 3 a,

lan|

converges absolutely. If [ > 1, it diverges.

2. The Root test: Let L = limsup |a,|*/". If L < 1 then " a,, converges absolutely. If
L > 1it diverges.

3. Applying the root test to power series we see that if R~! = limsup |a,|"" > 0,
then ) a,,2™ converges absolutely when |z| < R (and uniformly on any compact
subset of the disc of convergence) and diverges when |z| > R. This R is called the
radius of convergence. (The ratio test can also be used to determine R in many
cases.)

4. On a compact subset of the disc of convergence, the power series can be differ-
entiated and integrated term-by-term to get a power series that also converges
uniformly.



