
1 Recap
1. Determinant of exponentials.

2. Solution of homogeneous and inhomogeneous autonomous problems (Duhamel).

2 Linear systems
We shall now discuss only uniqueness (existence will be considered later) for a non-
autonomous system y′ = A(t)y + B(t) where A(t), B(t) are continuous functions on
[a, b]with y(t0) = y0 where t0 ∈ [a, b]. Without loss of generality, t0 = 0 (why?). Suppose
u, v are differentiable solutions with u(t0) = v(t0), then (u − v)′ = A(t)(u − v). Thus

u − v =

∫ t

t0

A(u − v)ds. Thus ∥u − v∥ = ∥
∫ t

t0

A(u − v)ds. Now we have the following

lemma.

Lemma 2.1. Let f : [a, b] → Rn be a continuous function. Then ∥
∫ t

t0
f(s)ds∥ ≤

∫ t

t0
∥f(s)∥ds.

Proof. Indeed, let v(t) =
∫ t

t0
f(s)ds. Then ∥v∥2 = v.

∫ t

t0
f(s)ds =

∫ t

t0
v(t).f(s)ds ≤∫ t

t0
∥v(t)∥∥f(s)∥ds = ∥v(t)∥

∫ t

t0
∥f(s)∥ds. Hence we are done.

Thus, ∥u − v∥ ≤
∫ t

t0
∥A(t)∥∥u − v∥. If A(t) is continuous, then so is ∥A(t)∥ and

thus ∥A(t)∥ ≤ C on [a, b]. Using Gronwall’s inequality (HW problem), we see that
∥u− v∥ ≤ eC(t−t0)∥u− v∥(t0) = 0. Hence u = v.

For the inhomogeneous non-autonomous case, y′ = A(t)y+B(t), Suppose we solve
the homogenous system y′ = A(t)y with y(t0) = ei(t0) (note that we already know
uniqueness, and we are assuming existence), we get a bunch of solutions that are
linearly independent (why?) and if arrange them in a column, we get an invertible
matrix Φ(t, t0). Let Ψ(t) be any invertible matrix satisfying Ψ′ = A(t)Ψ. Note that
Φ(t, t0) = Ψ(t)Ψ(t0)

−1 (why?) As a consequence, y⃗(t) = Φ(t, t0)y⃗(t0) and hence the
space of solutions is n-dimensional.
We claim that the solution to y′ = A(t)y + B(t) is y(t) = Φ(t, t0)y0 +

∫ t

t0
Φ(t, s)B(s)ds

akin to the Duhamel formula for the autonomous case.

Proof. Let’s differentiate this formula and check that it satisfies the equation (it obvi-
ously satisfies the initial conditions).

y′ = AΦ(t, t0)y0 +
d

dt

∫ t

t0

Φ(t, s)B(s)ds = Ay +Ψ′
∫ t

t0

Ψ(s)−1B(s)ds

= AΦ(t, t0)y0 + AΨ(t)

∫ t

t0

Ψ−1(s)B(s)ds = Ay. (1)



3 Real-analytic functions
The method of exponentiation tells us that it might be prudent to try to solve ODE
using power series. To this end, we make a definition:
Def: A function f : (a, b) → R is said to be real-analytic at t0 if there exists a δ > 0
such that f(t) =

∑∞
k=0 ck(t − t0)

k converges for all t ∈ (t0 − δ, t0 + δ). It is said to be
real-analytic on (a, b) if it is real-analytic at every point in (a, b).
Before we come up with examples, here are some important facts from analysis:

1. The Ratio test: Let L = lim sup |an+1|
|an| and l be the lim inf. If L < 1 then

∑
an

converges absolutely. If l > 1, it diverges.

2. The Root test: Let L = lim sup |an|1/n. If L < 1 then
∑

an converges absolutely. If
L > 1 it diverges.

3. Applying the root test to power series we see that if R−1 = lim sup |an|1/n > 0,
then

∑
anx

n converges absolutely when |x| < R (and uniformly on any compact
subset of the disc of convergence) and diverges when |x| > R. This R is called the
radius of convergence. (The ratio test can also be used to determine R in many
cases.)

4. On a compact subset of the disc of convergence, the power series can be differ-
entiated and integrated term-by-term to get a power series that also converges
uniformly.
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