

1 Recap

1. Duhamel formula for non-autonomous equations.
2. Review of power series.

2 Real-analytic functions

Examples/counterexamples:

1. $e^x = 1 + x + x^2/2! + \dots$ has infinite radius of convergence. It is certainly real-analytic at $x = 0$.
2. $\frac{1}{1-x} = 1 + x + x^2 + \dots$ has radius of convergence 1. It is real-analytic on the disc of convergence. In fact, $\frac{1}{1-a-(x-a)} = \frac{1}{1-a}(1 + \frac{x-a}{1-a} + \dots)$ has radius of convergence $|1-a|$. It is real-analytic everywhere except at 1. Such a point is called a singular point.
3. Let $f(x) = e^{-1/x^2}$ when $x > 0$ and $f(x) = 0$ when $x \leq 0$. We claim that this function is smooth, i.e., it is differentiable everywhere as many times as we want. But it is not real-analytic! (why?)

Proof of Claim: f is obviously smooth everywhere except possibly at 0. It is continuous at 0 (why?) $f' = \frac{2}{x^3}f$ when $x \neq 0$. We can easily see that f is differentiable at 0 and in fact f' is continuous at 0 too. This gives us a hint by induction. Assume the induction hypothesis that $f^{(k)} = fp_k(\frac{1}{x})$ when $x \neq 0$ and 0 when $x = 0$ where p_k is a polynomial of degree at most $3k$. Now when $x \neq 0$, $f^{(k+1)} = \frac{2}{x^3}fp_k(1/x) - \frac{1}{x^2}fp'_k(1/x)$. Clearly $f^{(k+1)}$ is also of the same form. Moreover, it is 0 at 0 (why?).

We now prove a useful lemma.

Lemma 2.1. *If $f : I = (t_0 - \delta, t_0 + \delta)$ is a uniformly convergent power series around t_0 , then f is real-analytic at every other point, i.e., it can be locally expressed as a power series around any other point in the interval.*

Proof. Consider $a \in I$. Then $f(x) = \sum (x - a - (t_0 - a))^n c_n$ where this series converges absolutely and uniformly on $|x - a| < \delta - |t_0 - a|$ by the triangle inequality. Expanding, $f(x) = \sum_n \sum_{k=0}^n \binom{n}{k} (x - a)^k (t_0 - a)^{n-k} c_n$. By absolute convergence, we can sum in any order we want and hence we interchange the summation to get $f(x) = \sum_{k=0}^{\infty} (x - a)^k \sum_{n=k}^{\infty} c_n (t_0 - a)^{n-k}$. \square

Using this lemma we prove the following interesting characterisation of real-analytic functions.

Theorem 1. *A real-valued function f defined in a neighbourhood of t_0 is real-analytic at t_0 iff*

1. f is smooth in a neighbourhood of t_0 , and
2. there exist positive δ, M such that for $t \in (t_0 - \delta, t_0 + \delta)$, $|f^{(k)}(t)| \leq M \frac{k!}{\delta^k}$ for $k = 0, 1, 2, \dots$

Proof. 1. If the conditions are met: By Taylor's theorem, the error term in the Taylor series up to order $k - 1$ (here we use the smoothness of f in a neighbourhood of t_0) is $f^{(k)}(t_k) \frac{(x-t_0)^k}{k!}$ where $t_k \in [t_0 - \delta/2, t_0 + \delta/2]$. This error is at most $\frac{M}{2^k}$. Hence as $k \rightarrow \infty$ we see that the Taylor series converges uniformly on $[t_0 - \delta/2, t_0 + \delta/2]$. Hence f is real-analytic at t_0 .

2. If f is real-analytic at t_0 : HW (Hint: Use the proof of the lemma above). □

If we replace $k!$ by $(k!)^s$ where $s \geq 1$, we get a class of smooth functions called the Gevrey class of order s . This class (and its generalisation to multivariables) is very important for PDE of various types. Cedric Villani won the fields medal for using this class effectively for a specific PDE (the Boltzmann equation). Here are a couple of examples of using power series for ODE (before we state and prove general results).

1. $y'' + y = 0$: Suppose there exists a twice-differentiable function satisfying this equation. Then by induction we see that it is smooth and $|y^{(k+2)}| = |y^{(k)}| = \dots$ and hence the conditions of the theorem above are met (why is the second one met?). Thus y is real-analytic. Now $y = \sum_n c_n t^n$ and hence $y'' = \sum_n n(n-1)c_n t^{n-2}$. Thus $c_n + c_{n+2}(n+1)(n+2) = 0$ for $n \geq 0$. Given c_0, c_1 , we can determine all the other coefficients inductively. The power series turns out to be $y = y_0 \sum (-1)^n \frac{t^{2n}}{(2n)!} + c_1 \sum (-1)^n \frac{t^{2n+1}}{(2n+1)!}$ which is expected.
2. $y'' - 2yt' + 2py = 0$ where $p \in \mathbb{R}$ (the Hermite equation): Again, if y is twice differentiable, then from the equation it is smooth (why?). We know that if there is a solution it is unique given y, y' at $t = 0$. Now we try to find it using power series. $y = \sum a_n t^n$. It satisfies $(n+1)(n+2)a_{n+2} = -2(p-n)a_n$. Thus $y = a_0 y_1 + a_1 y_2$. It is easy to check that y_1, y_2 are convergent on \mathbb{R} , and that they are linearly independent. If $p = 0, 1, 2, 3, \dots$ one of these solutions becomes a polynomial. (These polynomials are called Hermite polynomials and satisfy $H_n = (-1)^n e^{t^2} \frac{d^n (e^{-t^2})}{dt^n}$.) These polynomials also occur in quantum mechanics as the eigenstates (after multiplying by a Gaussian) of the harmonic oscillator. They are also used in numerical integration (Gauss-Hermite quadrature).