
1 Recap
1. Examples and counterexamples for real-analyticity.

2. Characterisation of real-analytic functions

3. Solving the (approximation of the) simple pendulum using power series.

2 Real-analytic functions
We now prove a general result.

Theorem 1. Consider y⃗′ = A(t)y⃗(t) + B(t) where A,B are real analytic matrix-valued
functions at t = t0 such that they are power series on (t0 − R, t0 + R). Then there exists
a unique solution to this equation with y⃗(t0), y⃗

′(t0) specified. Moreover, the solution is real-
analytic at t = t0 with radius of convergence at least R.

Proof. Uniqueness: We have already proven uniqueness of differentiable solutions
given y(t0) using the Gronwall inequality approach. By the way, any differentiable
solution is smooth on (t0 −R, t0 +R) (why?).
Existence: Without loss of generality, assume that t0 = 0. The radius of convergence of
A and B is at least R. Let r < R be fixed but arbitrary. The power series A(t) =

∑
Ant

n

and B(t) =
∑

b⃗nt
n converge uniformly on [−r − ϵ, r + ϵ]. We shall try to produce a

real-analytic solution that uniformly converges on [−r, r] as y⃗(t) =
∑

c⃗nt
n. Then

(n+ 1)c⃗n+1 =
n∑

k=0

Akc⃗n−k + b⃗n ∀ n ≥ 0. (1)

Inductively, we can solve for c⃗n uniquely given c⃗0. The question is whether we get a
convergent power series. We see that

(n+ 1)∥c⃗n+1∥ ≤
n∑

k=0

∥Ak∥c⃗n−k∥+ ∥⃗bn∥. (2)

Since A,B are uniformly convergent power series, ∥Ak∥ ≤ M
(r+ϵ)k

and ∥⃗bn∥ ≤ M
(r+ϵ)k

. Let
r̃ = r + ϵ. Let un satisfy the following identities.

(n+ 1)un+1 =
n∑

k=0

M

r̃k
un−k +

M

r̃n
. (3)

If u0 = ∥c⃗0∥, then un ≥ ∥c⃗n∥ ∀ n ≥ 0 (why?). Writing the same as above for n,

nun =
n−1∑
k=0

M

r̃k
un−1−k +

M

r̃n−1
. (4)



Thus

(n+ 1)un+1 = Mun +
nun

r̃

⇒ un+1

un

=
Mr̃ + n

(n+ 1)r̃
(5)

The limit is 1
r̃
. Thus we are done (why?).

While the theorem above is pleasant, it does not cover all cases of interest. For
example, suppose we want to study an electrostatic field in a long cylinder with
potential (cylindrical symmetry) specified on the cylinder, we will have to solve the
Laplace equation in cylindrical coordinates (r, θ, z). That is,

1

r
∂r(rϕr) +

1

r2
ϕθθ + ϕzz = 0. (6)

We use the method of separation of variables, i.e., ϕ = R(r)P (θ)Z(z). Then we see that
R satisfies

r

R
R′ +

r2

R
R′′ − λr2 = constant. (7)

That is, it is of the form (after changing variables and solving the other equations)
y′′ + y′

t
+ y

(
1− ν2s

t2

)
= 0 where ν is an integer. This is an example of Bessel’s equation.

(The solutions are called Bessel functions Jν(t).) It occurs in various other situations in
real life (and in probability I believe as the pdf of a product of two normal variables).
Likewise, if we try to solve the Laplace in spherical coordinates (or more generally, the
eigenvalues problem arising from the Hydrogen atom for instance), after separation of
variables, the solutions to the angular part are Pn(cos(θ)) where Pn are the Legendre
polynomials satisfying the equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0. (8)

Suppose we declare v = y′, these equations do not fall under the purview of the theorem
above because A,B are no longer real-analytic. They have singularities (why?) In fact,
if we try v = ty′, then the equations fall under the purview of

y⃗′ =
A(t)

t
y⃗, (9)

where A(t) is real-analytic. Such systems are called systems with regular singular points
(an oxymoron?)
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