HW 3 (40 points) - To be handed by Thursday, Sept 5 in the class or by email

- 1. (20 points) Prove that $V^k = \gamma_{,s}^k$ can be extended locally to a smooth vector field, if γ is an admissible variation. Also prove that the variation vector field is continuous in s, t.
- 2. (10 points) Find the transformation rule for Christoffel symbols under change of coordinates. Also prove that the geodesic equation is invariant under changes of coordinates.
- 3. (10 points) Let $S \subset \mathbb{R}^3$ be a compact submanifold such that there exists a smooth immersion $\vec{r} : U \subset \mathbb{R}^2 \to \mathbb{R}^3$ that takes U homeomorphically to a relatively open subset of S. Suppose the image misses a set of measure zero in S. Let vol be the volume form of the induced Riemannian metric on S (from the Euclidean metric on \mathbb{R}^3). Prove that $\int_S vol_g = \int_U ||\vec{r_u} \times \vec{r_v}|| dudv$.