
1 Recap
1. Connection matrix and its change under trivialisation changes.

2. Difference of connections is a section of T ∗M ⊗ End(E). (Optional remark on
Chern classes.)

3. Induced connection on duals and tensor powers.

4. Parallel transport along smooth paths. Reduction to solving an ODE. Further
reduction to proving a derivative estimate.

1.1 Parallel transport along piecewise smooth paths
Theorem 1. Given any vector v ∈ Ep at a point p such that γ(a) = p, we claim that there
exists a continuous piecewise smooth section s along γ with s(a) = v such that s is parallel.

Proof. Firstly note that s⃗(t) ̸= 0 because if it is zero somewhere, then by ODE theory,
it is zero throughout. Thus u(t) = |s⃗(t)| is smooth. Now u(t) ≤ C(1 +

∫
t0

tu(s)ds) and
hence u(t) ≤ CeC(t−t0) (why?). This means u(t) is uniformly bounded on [t0,M). Note
that |s⃗(s)− s⃗(t)| ≤ C|s− t| and hence limt→M− s⃗ exists. Now starting at that limit and
solving backwards, we see by uniqueness that this solution can be extended smoothly
across M . Hence we are done.

Taking cue from curves and surfaces, what happens if we parallel transport along
an infinitesimal rectangle? Can we somehow get a concept of “curvature"? If we move
from p to p+dtX , then ds = −[Ap(X)]sdt. If we move s+ds from p+dtX to p+dtX+daY ,
then we get (1− [Ap+dtX(Y )]da)(s + ds)− s = (1− Ap+dtX(Y )da)(1− Ap(X)dt)s− s =
first order + Ap(X) ∧ Ap(Y )s − ∂A

∂xi (Y )X isdadt. Likewise if we come back and so on,
we can see that the difference is proportional to (dA + A ∧ A)(X, Y ). This quantity
dA+ A ∧ A is locally a matrix of 2-forms, and as we saw earlier, it is actually a section
of Λ2M ⊗ End(E). This is called the curvature of the connection ∇.

Returning back to connections, suppose E has a metric h. Then we would want par-
allel transport to ideally preserve inner products, i.e., if s1, s2 are parallel, then ⟨s1, s2⟩
must be a constant. For this to happen, 0 = dh(s1,s2)

dt
=

dhij

dt
(s1)

i(s2)
j−hij[A(γ

′)s1]
i(s2)

j−
hijs

i
1[A(γ

′)s2]
j . Since this happens for any curve and any sections, dhij = hijA

i
k + hijA

j
k

(why?). Thus, in general, for any two sections and any curve d⟨s1, s2⟩ = ⟨∇s1, s2⟩ +
⟨s1,∇s2⟩. Any connection satisfying this property is said to be metric compatible with
h. Given h, we claim that metric compatible connections exist (HW).

1.2 The Levi-Civita connection
Now we need to generalise the notion of “tangential acceleration/derivative" from Eu-
clidean surfaces to general Riemannian manifolds, i.e., we want a connection ∇ on TM
given a Riemannian metric. Obviously, we would want ∇ to be compatible with the
metric (indeed, in the example of surfaces, parallel transport does preserve inner prod-
ucts). We would also hope that ∇γ′γ′ = 0 is precisely the geodesic equation, i.e., that
(γi)′′+(γi)′(γj)′∇∂j∂i = 0 is the same as the geodesic equation. In other words, we want



the connection coefficients to be the Christoffel symbols. To this end, what symmetries
do the Christoffel symbols satisfy? Recalling that Γi

jk = 1
2
gkl (gil,j + glj,i − gij,l), we see

that if we interchange j, k the symbols are symmetric. This means that ∇∂j∂k = ∇∂k∂j
which implies that ∇XY −∇YX = [X, Y ] (why?) This property is called being torsion-
free (the tensor∇XY −∇YX− [X, Y ] is called the torsion tensor of the connection - why
is this a tensor in the first place?). Here is the fundamental theorem of Riemannian
geometry:

Theorem 2. Let (M, g) be a Riemannian manifold. There is a unique connection (called the
Levi-Civita connection of g) ∇ on TM that is metric compatible and torsion-free. Moreover, if
Γi
jk∂i = ∇∂j∂k, then Γi

jk =
1
2
gkl (gil,j + glj,i − gij,l).

Proof. Let ∇ be such a connection. Then Z(g(X, Y )) = g(∇ZX, Y ) + g(X,∇ZY ) by
metric compatibility. Now Z(g(X, Y )) = g(∇XZ + [Z,X], Y ) + g(X,∇YZ + [Z, Y ]) by
torsion-freeness. Applying metric compatibility again, Z(g(X, Y )) = g([Z,X], Y ) +
g(X, [Z, Y ])+X(g(Z, Y ))+Y (g(X,Z))−g(Z,∇XY )−g(Z,∇YX). Now we use torsion-
freeness again:

Z(g(X, Y )) = g([Z,X], Y )+g(X, [Z, Y ])+X(g(Z, Y ))+Y (g(X,Z))−g(Z, [Y,X])−2g(Z,∇XY ).

That is,

g(Z,∇XY ) =
1

2
(g([Z,X], Y ) + g(X, [Z, Y ]) +X(g(Z, Y )) + Y (g(X,Z))− g(Z, [Y,X])− Z(g(X, Y ))) .

So such a connection is unique (and easily is seen to satisfy the given formula for
Christoffel symbols). That this expression defines a genuine metric-compatible torsion-
free connection is an exercise (HW).

Here is an important “naturality" property of the LC connection. Before stating this
result, note that if ϕ : M → N is a diffeomorphism, and if X is a smooth vector field on
M , then ϕ∗X(p) := (ϕ∗)ϕ−1(p)Xϕ−1(p) is a smooth vector field on N that is ϕ-related to X .

Lemma 1.1. If (M, g), (N, h) are Riemannian manifolds with LC connections ∇ and ∇̃
respectively, and ϕ : M → N is a local isometry, then ϕ∗(∇XY ) = ∇̃ϕ∗Xϕ∗Y where the
right-hand-side is interpreted locally.

Proof. Indeed, suppose Z is a vector field on N . Then in a neighbourhood U (such
that ϕ : ϕ−1(U) → U is a diffeo) of a point p, Z = ϕ∗Y for some smooth locally defined
vector field on ϕ−1(U) ⊂ M . Likewise, if A is a local vector field on U , A = ϕ∗X . Define
∇̃AZ := ϕ∗(∇XY ). We claim that this definition is well-defined, is metric-compatible,
and torsion-free. Hence it is the LC connection of h. (HW)

Given the Levi-Civita connection, there are induced connections on T ∗M and the
tensor bundles as before. For completeness, here is how the induced connection
formula works for (1, 1)-tensors for instance: (∇kT )

ij = T i
j,k + Γi

klT
l
j − Γl

kjT
i
l .
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