
1 Recap
1. Parallel transport along piecewise smooth paths.

2. Curvature via parallel transport.

3. Metric compatible connections

4. Levi-Civita connection and the fundamental theorem of RG.

5. Naturality.

2 The Levi-Civita connection
Remark: Here is another way to motivate the torsion-free condition. Consider the
induced connection on 1-forms. Note that ∇ω is a 2-tensor. So Alt(∇ω) is a 2-form.
But there is already a differential operator taking one-forms to two-forms: d. When is
Alt(∇ω) = dω? That is, ωi,j − ωj,i − (Γk

ij − Γk
ji)ωk = ωi,j − ωj,i. Thus Γk

ij = Γk
ji which is

precisely the torsion-free condition.

Now we define the classical operators of multivariable calculus. As mentioned
earlier, gradf = ∇f = (df)#. We can define the divergence of a vector field as
divX = tr(∇X) = (∇X)ii. Thus ∆f = div(gradf) = fijg

ij + gij,i fj + Γi
kig

kjfj .
We now have a version of Stokes’ theorem: Suppose Y is a smooth vector field on a com-
pact oriented Riemannian manifold (without boundary) (M, g). Then

∫
divY volg = 0.

Proof: The point is that the following lemma holds:
Lemma: divY volg = diY volg where iY ω is the “contraction operator", i.e., iY ω(v1, . . . , vn−1) =
ω(Y, v1, . . . , vn−1).
Given this lemma, we are done by the usual Stokes theorem. The proof of the lemma
is as follows:
diY (

√
det(g)dx1 ∧ . . .) = d(

√
det(g)(Y 1dx2 . . . − dx1Y 2dx3 . . .)). Assume that at p, we

choose normal coordinates for g. Then d
√
det(g)(p) = 0 and

√
det(g)(p) = 1. More-

over, divY (p) = Y i
,i(p). Upon calculation, we easily see that divY volg = diY volg at p.

Since p is arbitrary, we are done.

3 Curvature of the Levi-Civita connection
We can define the Riemann curvature endomorphism of the LC connection as we did
for the usual connections but we prefer to do it from scratch as follows: R(X, Y )Z =
∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.
Why is this a tensor? That is, we claim thatR(X, Y )Z(p)depends only onX(p), Y (p), Z(p)
and not on their values nearby (including derivatives). As before, we claim that it is
enough to show linearity over smooth functions (why?) Indeed this expression is of
course linear over constants. Now R(fX, Y )Z = ∇fX∇YZ − ∇Y∇fXZ − ∇[fX,Y ]Z =
f∇X∇YZ −∇Y (f∇XZ)−∇fXY−Y (f)X−fY XZ = f∇X∇YZ − f∇Y∇XZ − Y (f)∇XZ −



f∇[X,Y ]Z+Y (f)∇XZ = fR(X, Y )Z. Likewise, we can prove linearity in the other vector
fields too. Thus this Riemann curvature is a tensor. It is a (1, 3) tensor (because it takes in
three vectors and spits out one vector) and R(X, Y )Z = −R(Y,X)Z. The Riemann cur-
vature tensor is Riem(X, Y, Z,W ) = g(R(X, Y )Z,W ). Locally, R(∂j, ∂k)∂l = R i

jkl ∂i (in
contrast to the curvature of bundles where we would have chosen the conventionRi

jkl).
In other words, R = R i

jkl dx
j⊗dxk⊗dxl⊗∂i. AlsoRiem(∂j, ∂k, ∂l, ∂i) = Rjkli = R a

jkl gia.
The explicit expression for the Riemann curvature is as follows:
R l

ijk = Γl
jk,i − Γl

ik,j + Γl
ikΓ

s
jk − Γt

ikΓ
l
jt. Clearly, for Euclidean space, this curvature is 0.

It is also zero for the flat torus (that is, the metric induced on the torus from Euclidean
space via Riemannian covering).

3.1 Symmetries of the Riemann curvature
Just as for any tensor, we need to understand the symmetries (under interchanges) for
the Riemann curvature as well.

Theorem 1. Let X, Y, Z,W be smooth vector fields. (Since we are dealing with tensors, the
values depend only onX(p), Y (p), Z(p),W (p). Thus without loss of generality, we may assume
that these are coordinate vector fields.) Then

1. R(X, Y )Z = −R(Y,X)Z (Rijkl = −Rjikl)

2. ⟨R(X, Y )Z,W ⟩ = −⟨R(X, Y )W,Z⟩ (Rijkl = −Rijlk)

3. (First/Algebraic Bianchi identity) R(X, Y )Z + R(Y, Z)X + R(Z,X)Y = 0. (Rl
ijk +

Rl
jki +Rl

kij = 0)

4. Riem(X, Y, Z,W ) = Riem(Z,W,X, Y ). (Rijkl = Rklij)

Proof. 1. ∇X∇YZ −∇Y∇XZ is obviously skew-symmetric and X, Y .

2. It is enough to prove (by multilinearity) that Riem(X, Y, Z, Z) = 0.

⟨∇X∇YZ,Z⟩ = X(⟨∇YZ,Z⟩)− ⟨∇YZ,∇XZ⟩
= X(Y (⟨Z,Z⟩))−X(⟨Z,∇YZ)− ⟨∇YZ,∇XZ⟩

= Y (X(⟨Z,Z⟩))− ⟨∇YZ,∇XZ⟩ − ⟨∇XZ,∇YZ⟩ − ⟨Z,∇X∇YZ⟩
= 2Y (⟨∇XZ,Z⟩)− 2⟨∇YZ,∇XZ⟩ − ⟨Z,∇X∇YZ⟩

= 2⟨∇Y∇XZ,Z⟩ − −⟨Z,∇X∇YZ⟩. (1)

Thus we are done.

3. R(X, Y )Z = ∇X∇YZ −∇Y∇XZ. Cyclic addition is easily shown to be zero.

4. Rijkl = −Rjkil−Rkijl = Rjkli+Rkilj = −Rklji−Rljki−Rilkj −Rlkij = 2Rklij −Rjilk

and hence we are done.
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The Riemann tensor is a rather complicated object. Using the linear algebraic op-
eration of trace, one can simplify the notion of curvature (at a cost of potential loss of
information).

1. Ricci curvature: Ricc(Y, Z) = Tr(X → R(X, Y )Z), i.e., Riccij = R k
kij . Note

that Riccji = R k
kji = −R k

jik − R k
ikj = Riccij (why?). Thus the Ricci tensor is a

symmetric (0, 2) tensor just as the Riemannian metric itself. (Interesting question:
Are there Riemannian metrics such that Ricc = λg where λ is a constant? There
are sometimes, and not, some other times. Such metrics are called Einstein metrics
(because the Lorentzian version of the question models gravity in a vaccuum filled
with dark energy). This question is very popular in Riemannian geometry (or at
least used to be).)

2. Scalar curvature: We can take a further trace of the Ricci: S = Riccijg
ij to get

a scalar-valued function. While we may lose information, a natural question is
to ask whether there are metrics of constant scalar curvature. In fact, we can
attempt to produce one by taking a conformal change S(efg0) = c. So we can ask
whether there are metrics of constant scalar curvature in every conformal class.
This is called the Yamabe problem (and it has been solved completely).
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