
1 Recap
1. Riemann curvature tensor and its symmetries.

2. Ricci tensor and scalar curvature.

2 Curvature of the Levi-Civita connection and Riemann’s
theorem

We have the following crucial naturality principle for the Riemann curvature tensor
(why?):
Ifφ : (N, h)→ (M, g) is a smooth immersion such thath = φ∗g, thenφ∗((Rh(X, Y )Z)p) =
Rg(φ(p))(φ∗X,φ∗Y )φ∗Z and Riemh = φ∗Riemg.
We can now prove Riemann’s theorem:

Theorem 1. There exist local coordinates in a neighbourhood U of p where g is Euclidean iff
Riemg ≡ 0 in a neighbourhood V of p.

Proof. If g is Euclidean, obviously Riemg ≡ 0. So we shall assume that Riemg ≡
0. The key point is that suppose we manage to find an orthonormal basis Ei (in
some neighbourhood) that is parallel then [Ei, Ej] = ∇Ej

Ei − ∇Ei
Ej = 0. Therefore

by Frobenius’s theorem (that we discussed in the first few lectures), we can find a
coordinate chart such that Ei = ∂i. Thus we are done.
Here is a proof of the existence of such an orthonormal basis: Consider a coordinate
neighbourhood and consider a coordinate rectangle [0, a]× [0, a] . . .. First consider any
orthonormal basis at the origin andparallel transport it along the x1 axis to get a parallel
collection of vector fields that form an orthonormal basis on [0, a] × 0 × 0 . . .. (This
basis is smooth in x1 because of the smooth dependence of parameters of solutions of
ODE). Now parallel transport from (t, 0, . . .) to (t, x2, 0, . . .) and so on. We then get a
smooth collection of vector fields that form an orthonormal basis everywhere. Note
that ∇∂1Ei = 0 on [0, a]× 0× . . .. We claim that ∇∂1Ei = 0 on [0, a]× [0, a]× 0× . . . as
well: Indeed,∇∂2∇∂1Ei = ∇∂1∇∂2Ei = 0 (because the curvature vanishes). Thus∇∂1Ei
is parallel along the x2-axis. Since it is 0 at [0, a]× 0 . . ., it is zero throughout. (Parallel
transport is unique or alternatively, it preserves lengths.) Likewise, inductively we can
conclude that Ei are parallel.

2.1 Symmetries of the Riemann curvature and other measures of
curvature

Wealsohaveadifferential Bianchi identity: (∇XR)(Y, Z))+(∇ZR)(X, Y )+(∇YR)(Z,X)) =
0where∇ acts onR treating it as a (3, 1) tensor. Thuswithout loss of generality, assume
X, Y, Z are coordinate vector fields in normal coordinates at the point.

(∇XR)(Y, Z)W = ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW.
(1)



Since the coordinates are normal,∇XZ = 0 etc. Hence at p,

(∇XR)(Y, Z)W = ∇X∇Y∇ZW −∇X∇Z∇YW. (2)

Cyclic addition easily produces zero.
Sectional curvature: Given a two-plane spanned by X and Y , we can define K(two −
plane) = 〈R(X,Y )Y,X〉

|X|2|Y |2−〈X,Y 〉2 (why is this independent ofX and Y and dependent only on the
two-plane). Note that ifX and Y are orthonormal, it is simplyRiem(X, Y, Y,X). So we
have a number associated to every two-plane. The point is that the sectional curvatures
completely determine the Riemann tensor. Indeed, (Exercise) 6Riem(X, Y, Z,W ) is the
coefficient of t2 in

Riem(X + tW, Y + tZ, Y + tZ,X + tW )− t2Riem(X,Z, Z,X)− t2Riem(W,Y, Y,W )

−Riem(Y + tW,X + tZ,X + tZ, Y + tW ) + t2Riem(Y, Z, Z, Y ) + t2Riem(W,X,X,W ).
(3)

We can nowdefine the notion of “constant curvaturemanifold" as simply aRiemannian
manifold where the sectional curvatures are the same for all points and all planes. We
can also talk about “positively curved manifolds" as sectional curvature at all points
for all planes being positive and so on. As we shall see later, there aren’t many simply
connected manifolds with constant sectional curvature.

2.2 Curvature of model spaces (the space forms)
Rn has curvature zero. Are there manifolds with constant sectional curvatures? There
are. Consider Sn, gSn with radius R and Hn, gHn =

R2
∑

i dx
i⊗dxi

(xn)2
.

A few facts can help us calculate the curvature (in general):

1. Curvature innormal coordinates: (HW)Rijkl(P ) =
1
2
(gik,jl + gjl,ik − gil,jk − gjk,il) (P ).

2. Curvature for a conformal change: (HW) If g̃ = e2φg, then R̃ijkl = e2φRijkl −
e2φ(gikTjl + gjlTik − gilTjk − gjkTil) where Tij = ∇i∇jφ−∇iφ∇jφ+ 1

2
|dφ|2gij .

3. Isometry groups act transitively for model spaces:

(a) Euclidean space: Obviously translations act transitively.
(b) Sphere: Consider O(n+ 1). It acts on the sphere and since it is an isometry

of Rn+1, it acts isometrically on the sphere. Now we claim that any point
P can be taken to the north pole N via an element of O(n + 1). Indeed, we
prove it by induction. For S1, this is easily true. Assume it is true for Sn−1.
Now consider any hyperplane containing the origin, P , and N . Choose any
orthonormal basis for this plane and extend it by producing a normal vector.
The intersection of this plane with Sn is Sn−1. Use the induction hypothesis
to produce an O(n) matrix taking P to N within this plane. Now extend it
by fixing the normal vector in Rn+1.

2



(c) Hyperbolic space: We can prove that (HW)Hn is isometric to two other
models, the Poincaré ball model Bn, gnB = 4R2

(R2−|x|2)2 gEuc, and the hyperboloid
model (hence hyperbolic metric) Hyp which is the set of points on the up-
per branch of the hyperboloid Q(x) =

∑
i(x

i)2 − (xn+1)2 = −R2 equipped
with the induced bilinear form from Q. It turns out that despite Q be-
ing Lorentzian, the induced bilinear form is a Riemannian metric. The
group SO+(n, 1) preserves the bilinear form and hence themetric. A similar
proof as above shows that this group also takes any point P to the “pole"
(0, 0 . . . , 0, 1). (Basically usingO(n), take the firstn coordinates to (0, 0, . . . , a)
and then use an appropriate Lorentz transformation.)
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