
1 Recap
1. Riemann’s theorem.

2. Sectional curvature.

3. Isometries of model spaces.

1.1 Curvature of model spaces (the space forms)
Given these facts, we have the following formula.

Rijkl = λ(gilgjk − gikgjl), (1)

where λ = 0 for Euclidean space, R−2 for the sphere and −R−2 for hyperbolic space. In
particular, to calculate the sectional curvature of a plane, assume wLOG that we have
normal coordinates such that ∂i, ∂j span the plane. Then Rijji = λ. Hence these spaces
have constant sectional curvature and these metrics are also Einstein metrics.

Proof. By rescaling, assume that R = 1. For hyperbolic space, use the formula for
conformal change to directly calculate. For the sphere, we can calculate only at the
north pole by choosing xn+1 =

√
1− (x1)2 . . .. It turns out these coordinates are normal

at that point. Hence we use the formula in normal coordinates.

It is a rather intriguing question to know whether these are the only constant sec-
tional curvature spaces. Of course not! The torus is another example. However, are
these the only simply connected ones? (That is, is the universal cover of every constant
sectional curvature space one of these “space forms"?) The answer is yes! (The Killing-
Hopf theorem). We shall prove this later. In fact, if the sectional curvature is ≤ 0, the
universal cover is diffeomorphic to Rn (Cartan-Hadamard theorem). The Killing-Hopf
theorem combined with the observation that the Ricci tensor determines Riemann in
3 dimensions implies that to prove the Poincaré conjecture, it is enough to produce an
Einstein metric on every compact simply connected manifold. Hamilton’s Ricci flow
was designed specifically for this purpose. In fact, Hamilton proved that if there is a
metric with positive sectional curvature on a compact simply connected manifold, then
the manifold is a three-sphere. To remove this assumption required a lot of ingenious
work, which was done by Perelman.
We can also compute geodesics in these model spaces.

1. Euclidean space: One can easily see that straight lines are the geodesics (indeed
γ′′(t) ≡ 0).

2. Sphere: Using the naturality properties of the Christoffel symbols, one can see
that it is enough to consider geodesics passing through the north pole. One can
verify that any plane passing through the origin and the north pole intersects
the sphere in a geodesic. (One can verify this in graph coordinates.) So all these
geodesics intersect at the south pole.



3. Hyperbolic space: Using naturality properties, one can prove that it is enough
to consider (0, 0, . . . , 1) in Hn. Now one can verify that vertical lines and arcs of
circles with centre on xn+1 = 0 are the only geodesics (indeed they are geodesics
and every tangent vector is attained as a starting vector).

As a consequence, all geodesics on these spaces are defined on (−∞,∞). Spaces
where a geodesic through every point in every direction is defined on (−∞,∞) are
called geodesically complete. Note that R2 − (0, 0) with the Euclidean metric is not
geodesically complete. It turns out (Hopf-Rinow) that geodesic completeness is equiv-
alent to metric space completeness. (By the way, a similar property does not make
sense for Lorentzian manifolds and is the starting point of the complications of the
singularity theorems in general relativity. In fact, one way to define a singularity is
through geodesic incompleteness.)

2 Geometry of submanifolds
Recall that for surfaces inR3, we defined the Gaussian curvature using the shape opera-
tor. What is the relationship between this curvature and say, the scalar curvature of the
induced metric? How can this be generalised to arbitrary Riemannian submanifolds
of Riemannian manifolds?

To this end, let (M, g) ⊂ (M̃, g̃) be a Riemannian submanifold. The first point
is that TM̃ restricts to M as a vector bundle (why?) Now at every point, TpM̃ =
TpM ⊕ NpM where NpM = TpM

⊥. This splitting actually is a vector bundle splitting
TM̃ = TM ⊕NM (why?) This NM is called the normal bundle of M . Note that if M
is a regular level set, NM is trivial (why?) It turns out that if dim(M) = n − 1, n − 2,
then the converse holds but it is not known whether it holds in general.

The first observation is this: The Levi-Civita connection ∇XY for (M, g) is obtained
from that of M̃, g̃ by the formula ∇XY = (∇̃XY )T . Indeed, define DXY = (∇̃XY )T .
This is a connection (why?). Now

g(DXY, Z) = g̃(∇̃XY −
∑
i

g̃(∇̃XY,Ni)Ni, Z) = g̃(∇̃XY, Z) = X(g(Y, Z))− g̃(Y, ∇̃XZ.

Hence it is metric-compatible. Likewise, it is torsion-free. Hence it is the Levi-Civita
connection.

So what is (∇̃XY )⊥ then? It actually depends on only X(p), Y (p) (why?) and is a
symmetric (1, 2)-tensor Π(X, Y ) = (∇̃XY )⊥ = ∇̃XY −∇XY (why?) called the second
fundamental form. Let X, Y, Z,W be vector fields on M and let ν be a section of the
normal bundle. Then we have: The Weingarten equation ⟨∇̃Xν, Y ⟩ = −⟨ν,Π(X, Y )⟩
(thus confirming that this is the same second fundamental form as in the case of
surfaces): Indeed,

⟨∇̃Xν, Y ⟩ = X⟨ν, Y ⟩ − ⟨ν, ∇̃XY ⟩ = 0− ⟨ν, (∇̃XY )⊥⟩ = −⟨ν,Π(X, Y )⟩.
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