
1 Recap
1. Gauss-Codazzi equation.

2. First variation formula and the fact that critical points of the length and en-
ergy functionals are smooth geodesics (well, after reparametrisation for length).
Length can be reducing by “rounding the corner". So we can assume that the
admissible curves are actually C1, regular, and piecewise smooth.

3. Exponential map definition.

1.1 Exponential map
Theorem 1. 1. The domain E of the exponential map is an open subset of TM and exp is

a smooth map.

2. For all v ∈ TpM , γv(t) = exp(p, tv) if (p, tv) ∈ E . Moreover, d
dt
|t=0 exp(p, tv) = γ′(0).

3. Ep (which is E ∩ π−1(p)) is an open subset of TpM which is star-shaped w.r.t 0⃗, i.e.,
tv ∈ Ep ∀0 ≤ t ≤ 1 if v ∈ Ep.

4. The map ϕ : E → M ×M given by ϕ(p, v) = (p, exp(p, v)) is a local diffeomorphism at
any point (p, 0), and expp(v) is a local diffeomorphism from an open subset of TpM to a
neighbourhood of p in M .

Choosing an orthonormal basis for TpM , we get a coordinate chart around p called
geodesic normal coordinates. The “radial distance" is r =

√
(x1)2 + . . . and the “radial

vector field" is ∂
∂r

:= xi

r
∂i.

Also, as a corollary of the above result, for any admissible path γ and any continuous
piecewise smooth vector field V along γ, there exists an ϵ > 0 and an admissible
variation Γ : (−ϵ, ϵ) × [a, b] → M of γ such that V = ∂sΓ(0, t). Indeed, define Γ(s, t) =
exp(γ(t), sV (t)). ∂

∂s
Γ(0, t) = V (t).

Proof. 1. Given any (p, v) in the domain, the result for existence of geodesics shows
that there is a uniform time of existence independent of p, v as long as p ∈ U and
|v| < ϵ. Now rescale the time parameter to make sure that the time of existence is
1 (at the cost of reducing ϵ if necessary). The smooth dependence on parameters
for ODE shows that exp is smooth.

2. γ′
tv(0) = tv and γtv(0) = p. Suppose γ′

v(0) = v and γv(0) = p. We need to show
that γtv(1) = γv(t). Now consider γ̃(s) = γtv(

s
t
). Then γ̃ is still a geodesic and

γ̃′(0) = v, γ̃(0) = p and hence by uniqueness γv(t) = γ̃(t) = γtv(1). Differentiating
w.r.t t at t = 0 we get the desired result.

3. The aforementioned argument shows that Ep is open. Now if v ∈ Ep, i.e., γv exists
on [0, 1], then γtv(s) = γv(ts) and hence it is star-shaped.



4. Note that (ϕ∗)p,0 =

[
I 0

Dp exp(p, 0) Dv exp(p, 0) = I

]
. Thus the derivative is an

isomorphism and moreover, if we fix p, then the derivative of exp(p, .) is also an
isomorphism. Hence by IFT we are done.

For geodesic normal coordinates, we have the following result.

Theorem 2. 1. xi(p) = 0, gij(p) = δij .

2. γv(t) = (tv1, . . . , tvn) if v ∈ TpM .

3. γ′
v(t) = |v|∂r.

4. Γk
ij(p) = 0 and ∂kgij(p) = 0.

Proof. 1. exp(0) = p. Since (exp∗)0 = Id, and we have chosen an orthonormal basis,
gij(p) = δij .

2. exp(tv) = γv(t) as proven earlier.

3. γ′
v(t) = v = |v|∂r.

4. (γ′′
v )

i+Γi
jk(γv(t))(γ

′
v)

i(γ′
v)

j = 0 and hence 0+Γi
jk(tv)v

ivj = 0. At t = 0, this means
that Γi

jk = 0. Thus at p, gil,j + glj,i − gij,l = 0. Interchanging i and l and adding we
see that gli,j = 0.

We know want to see if geodesics are at least locally length minimising. We have
the following theorem.

Theorem 3. For any point p ∈ M , there exists a “geodesically convex neighbourhood" W , i.e.,
there exists ϵ > 0 such that for any x, y ∈ W , there is a unique smooth geodesic of length < ϵ
γ : [0, 1] → W such that γ(0) = x, γ(1) = y. Moreover this geodesic is length-minimising.

As a corollary, geodesics are minimising for short periods of time. Indeed, for a
short enough time, the length is < ϵ and the geodesic lies in a geodesically convex
neighbourhood. Hence it is minimising.
To prove such a result, let us try to see if the exp(tv) is minimising from t1 ∈ (0, 1) to
t1 < t2 ∈ (0, 1). Suppose σ(t) is another admissible curve connecting these points. We
use polar coordinates for the tangent space. Then σ′(t) = r′(t)∂r + v(t) where v(t) is a
linear combination of the other basis vectors. If ∂r is orthogonal to v(t) using the inner
product g(σ(t)), then ∥σ′∥ ≥ |r′(t)|∥∂r∥. Since

∫
|r′| ≥ |

∫
r′(t)| = |t2 − t1||v|, we see that

radial geodesics that lie in a region where exp is a diffeomorphism are minimising at
least among all curves that lie within that region. So we need to prove the following
Gauss lemma:

Lemma 1.1. Denote by Sp,η the set of tangent vectors in TpM of length η. Let Up,δ be a geodesic
ball of radius δ centred at p, that is, the diffeomorphic image of B(0, δ) under expp. Likewise,
∂Up,δ = expp(Sp,η).
The radial vector field ∂r is orthogonal to ∂Up,δ
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Proof. Let x0 = exp(v0) lie on the geodesic sphere. Let v(s) be a curve in the tangent
space lying on the sphere such that v(0) = v0. Let X = σ′(0) where σ(s) = exp(p, v(s))
and let γ(t) = exp(p, tv0). We need to show that X is perpendicular to γ′(1). Define
Γ(s, t) = exp(tv(s)). Now let f(s, t) = ⟨∂sΓ, ∂tΓ⟩. Suppose we show that f is a constant
in t, then f(s, 0) = 0 (because expp is an isometry at the origin) and hence we will be
done.
Now ∂tf = ⟨Dt∂sΓ, ∂tΓ⟩+ 0 = ⟨Ds∂tΓ, ∂tΓ⟩ = 1

2
∂s∥∂tΓ∥2 = 0.

As a corollary, ∇r = ∂r (why?), as seen earlier, among admissible curves connecting
q1 and q2 (which are on a radial geodesic from p) lying entirely in a geodesic ball are
longer in length than radial geodesics (and are the unique such curves), and by con-
tinuity of the distance function, radial geodesics are length minimising (even starting
from p).
Moreover, every open geodesic ball Up,δ is a metric δ-ball. Indeed, if there is a point q
in the metric ball that is not in the geodesic ball, then consider a curve connecting p to
q of length < δ. Now that curve exists the geodesic ball at some point. The length till
that point is at least δ and that is a contradiction. (This also proves that closed metric
balls of sufficiently small radius are compact and that the closure of the open metric
ball is the closed one.)
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