
1 Recap
1. Gauss lemma and corollary that geodesic balls are metric balls.

2. Stated theorem on existence of geodesically convex neighbourhoods.

2 Local behaviour of geodesics
Theorem 1. For any point p ∈ M , there exists a “geodesically convex neighbourhood" W , i.e.,
there exists ϵ > 0 such that for any x, y ∈ W , there is a unique smooth geodesic of length < ϵ
γ : [0, 1] → W such that γ(0) = x, γ(1) = y. Moreover this geodesic is length-minimising.

Proof of the main theorem:
1. Weak geodesic convexity: By the ODE theory (and rescaling) based results men-

tioned earlier, there exists an ϵ and a neighbourhood U of p such that ϕ is a
diffeomorphism on Ṽ = {(x, v) vert x ∈ U, |v|x < ϵ}. Suppose W ⊂ U is a
neighbourhood such that W ×W ∈ ϕ(Ṽ ). Then given any two points q1, q2 in W ,
q2 = expq1(v) for |v| < ϵ. Let γ(t) = exp(tv). This is a geodesic connecting q1, q2
with length < ϵ. This geodesic is unique as well.

2. Minimality: We have already shown that radial geodesics are minimal in length
compared to admissible curves lying entirely within the geodesic ball of radius
ϵ. Let r0 be the length of the radial geodesic connecting x, y lying in W . Now
W ⊂ Ux,ϵ. Let σ : [0, 1] → M with σ(0) = x and σ(1) = y. If σ remains in Ux,ϵ then
L(σ) ≥ r0. If σ exists this geodesic ball, then at the first point of exit, the length
till that point is at least ϵ ≥ r0. Hence this geodesic is minimal in length.

3. Strong geodesic convexity: This will be a guided HW but basically, one first proves
that r◦γ for non-radial geodesics γ contained in a geodesic ballUp,δ (for sufficiently
small δ) attains its max at one of the endpoints (HW). Then suppose δ < ϵ/2 (where
ϵ is as above) such that Up,δ ⊂ W . Suppose x, y ∈ Up,δ. Then y = expx(v). The
geodesic expx(tv) lies in Up,ϵ (why?) and hence r(expx(tv)) ≤ max(r(x), r(y)) < δ
and hence lies in Up,δ.

3 Hopf-Rinow theorem and its consequences
We first note that ¯B(p, r) is the closed metric ball. This is not true for general metric
spaces. (Take a space X with ρ(x, y) = 1 iff x ̸= y. Then B̄(x, 1) = {x} but the closed
metric ball is all of X .) Indeed, ¯B(p, r) is contained in the closed ball (the closed ball
is a closed set because the distance is continuous). Suppose x is in the closed ball but
not in the closure. Then d(p, x) = r. Thus there is a sequence of unit speed admissible
curves connecting p and x such that L(γn) = ln < r + 1

n
. Let xn = γ(ln − 2

n
). Then

d(p, xn) ≤ ln − 2
n
< r. So xn ∈ Br(p) and hence x is a limit point.

The Hopf-Rinow theorem links geodesic completeness with metric space complete-
ness:



Theorem 2. TFAE.

1. (M,dg) is a complete metric space.

2. (M, g) is geodesically complete.

3. For all p ∈ M , Ep (the domain of expp) is all of TpM .

4. Closed and bounded sets are compact.

Moreover, if any of the equivalent conditions hold, then there is a minimal unit-speed smooth
geodesic connecting any two points.

Proof. 2 ⇒ 3 is trivial. We now prove 1 ⇒ 2:
If γ : I → M is a unit-speed smooth geodesic defined on the maximal interval I , such
that I ̸= R, that is, WLog, l = sup I < ∞, then consider the points xn = γ(l− pn) where
pn → 0. Note that d(xn, xm) ≤ |pn − pm| and hence these form a Cauchy sequence.
Since M is complete, xn → x. Now there exists a neighbourhood U of x and ϵ > 0
such that for all x ∈ U with |v|x < ϵ, exp(x, v) exists. For n large enough, xn ∈ U and
tn = l − pn > l − ϵ. Let σn(t) = exp(xn, tvn) where vn = γ′(tn). This geodesic exists
for t ∈ (0, ϵ). Now by uniqueness, σn(t) = γ(t + tn). Since l − tn < ϵ, σn(s) exists for
s ≤ l − tn and hence γ(t) exists on [l, l + ϵ

2
) which is a contradiction.

Now we shall prove that 3 ⇒ 5. This is the main point. In fact, given this fact,
3 + 5 ⇒ 4. Indeed, if S is a closed and bounded set, then its diameter d is finite.
Let K = exp( ¯B(0, d)). Now K is compact (being the image of a compact set under a
continuous map) and S ⊂ K because of 5. Moreover, ⇒ 1 is easy because it is a general
property of metric spaces. (By the way, we can also directly prove that 3+ 5 implies 1.)
Here is the proof that 3 ⇒ 5:
In fact, we shall prove that if expx is defined on all of TxM , then it can be connected
to any point y by a length minimising geodesic. Let Sx,ϵ be a closed geodesic sphere
(which is also a metric sphere). It is compact and hence there is a point p = expx(ϵv)
(where |v|x = 1) on it which is closest to y. The geodesic exp(tv) extends for t ∈ R.
Let l = dg(x, y). We claim that exp(x, lv) = exp(p, (l − ϵ)v) = y and that exp(tv) is
minimal. Both of these can be encoded in the statement d(γv(t), y) = l− t. Let T be the
supremum of all times such that this statement is true. Note that this supremum is a
maximum (by continuity). We prove two claims.

1. d(p, y) = l − ϵ and hence T ≥ ϵ > 0: By the triangle inequality, l = d(x, y) ≤
d(p, x) + d(p, y) = ϵ + d(p, y) and hence d(p, y) ≥ l − ϵ. To prove the opposite
inequality, if σ is any admissible curve connecting x and y, it hits the sphere at
some point p1. Now d(x, p1) = ϵ and d(p1, y) ≥ d(p, y) and hence l(σ) ≥ ϵ+d(p, y).
Hence, d(p, y) ≤ l − ϵ.

2. T = l: Suppose T < l. Then let p′ = γ(T ). Now l(γv(T ) = p′, y) = l−T . As before,
consider a geodesic ball (which is also a metric ball) of radius ϵ′ around p′. Let
p′0 = exp(p′, tv′) be a point on the boundary that is closest to y. Consider the path
γ̃ obtained by concatenating γv and exp(p′, tv′) = σ. Now d(x, p′) ≤ l(γ̃) = T + ϵ′.
Just as in the above claim, l − T = d(p′, y) = d(p′0, y) + ϵ. Hence, by the triangle
inequality, l = d(x, y) ≤ d(x, p′0) + d(p′0, y) = d(x, p′0) + l − T − ϵ′ and hence
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d(x, p′0) ≥ T + ϵ′. Thus d(x, p′0) = T + ϵ′ and so γ̃ is a unit-speed minimal geodesic
connecting x and p′0. Thus it is smooth and by uniqueness, coincides with γv(t).
This also shows that d(p′0, y) = l− (T + ϵ′) (where ϵ′ is arbitrarily small) and hence
contradicts the maximality of T .

Here are a few related theorems (some of which need Hopf-Rinow): Ambrose’s
theorem: Let (M, g) and (M̃, g̃) be Riemannian manifolds, and ϕ : M̃ → M be a local
isometry. If M̃, g̃ is complete, then

1. ϕ is a covering map (and hence M̃ is a Riemannian cover).

2. (M, g) is complete.

The main point is this lemma:

Lemma 3.1. Let (M̃, g̃) be complete. If ϕ : M̃ → M is a surjective local diffeo, and there exists
a c > 0 such that ∥ϕ∗v∥ ≥ c∥v∥, then ϕ is a covering map.
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