
1 Recap
1. Ambrose’s theorem.

2. Corollary that if expp does not have critical points on complete manifold, then
it is a covering map. (One crucial step is that thanks to Hopf Rinow, to prove
completeness it is enough to prove that expp is defined on TpM for one single
point p!)

3. Theorem on isometries coinciding.

4. Theorem on path homotopy classes.

2 Second variation formula and Jacobi fields
Just as there is a second derivative test in one-variable calculus, one can attempt
to study local and possibly global behaviour of geodesics using a second variation.
Let γ : [a, b] → M be an admissible path. An admissible two-parameter variation
Γ : (−ϵ, ϵ)× (−ϵ, ϵ)× [a, b] → M is a continuous map such that Γ(0, 0, t) = γ(t) and on
(−ϵ, ϵ)2 × [ak−1, ak] it is smooth. We see that Γ is smooth in the variation variables, and
there are two variation vector fields. Here is the second-variation formula.
Let γ be a geodesic, and Γ be an admissible proper two-parameter variation. Then
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Since the variation is proper, the first term vanishes. γ′ is smooth at s1 = s2 = 0.
Moreover, just as earlier, the s-derivatives of the variation fields are continuous (along
with the variation fields themselves). Thus the second term vanishes too.
Now integration-by-parts completes the proof.



As a corollary, if γ is of unit-speed, then
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Now we define the so-called Index form (the “Hessian" of the energy) at a geodesic γ
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consider fields that vanish at the endpoints (the so-called “tangent space" at γ).
Then,

Lemma 2.1. Let γ be a minimal geodesic. Then Iγ is positive-semidefinite on the “tangent
space to γ".

Proof. Take a variation with W as the variation field (like Γ(s, t) = exp(γ(t), sW (t))).
By Cauchy-Schwarz, E attains its minimum too and hence the second derivative test
and the second variation formula prove the result.

Suppose we take a variation by geodesics. What can we say about the variation
vector field of such a variation? (Why do we care? J(t) = ((expp)∗)tv(tw) is the variation
field of Γ(s, t) = expp(t(v + sw)) and we want to know about the critical points of this
map.) One can easily compute and see (how?) that

J ′′ +R(J, γ′)γ′ = 0.

Vector fields along γ satisfying this equation are called Jacobi fields. (Note that the
variation vector field above satisfies J(0) = 0 and J ′(0) = w.)
Here is a proof that every Jacobi field gives rise to a variation of geodesics with this
Jacobi field as the variation field: Let σ : (−ϵ, ϵ) → M be any smooth path such that
σ(0) = γ(0) and σ′(0) = J(0). Then let X(s),W (s) be parallel transports of γ′(0), J ′(0)
along σ. Define Γ(s, t) = exp(σ(s), t(X(s) + sW (s))). Now for every fixed s, Γ(s, t)
is a geodesic. At s = 0, Γ(0, t) = exp(γ(0), tγ′(0)) = γ(t). Thus this is a variation
through geodesics and hence the variation field V is a Jacobi field with J(0) = σ′(0)
and V ′(0) = Dt∂sΓ = Ds∂tΓ = Ds(X(s) + sW (s)) = W (0) = J ′(0). Since the Jacobi
field satisfies a second-order ODE, by uniqueness, V = J throughout.
As a corollary, for a radial geodesic in geodesic normal coordinates, if the unique Jacobi
field with J(0) = 0 and J ′(0) = w is J(t) = tw.
Given J(a), J ′(a) there is a unique Jacobi field with these starting values (and hence
the space of Jacobi fields is 2n-dimensional.) Indeed, this follows from ODE theory.
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