
1 Logistics
Email: vamsipingali@iisc.ac.in. Coursewebpage: http://math.iisc.ac.in/vamsipingali/
ma333RiemGeom2024autumn/ma333.html. HW : 20% (Roughly once in two weeks.
Copying (from each other or the internet) is strictly not allowed.), Midterm - 30%, and
Final (or project presentations - to be decided later) - 50%.

2 What is this course about and why should you care?
Riemannian geometry studies distances (and angles) on “curved" objects (like the
Earth). InR2, we are familiar with Euclidean geometry, with its similarity, congruence,
sum-of-interior-angles-of-a-triangle, circles, parallel lines, etc. Euclid formalised the
axioms of this plane geometry using 5 axioms (actually, these axioms are not as rigor-
ous as Euclid thought. The correct formulation awaited several centuries - the advent
of Hilbert). The 5th axiom (the parallel postulate) stated that through every point not
lying on a given line, there exists a unique line that does not intersect the given line.
This postulate was thought to be a consequence of the other postulates but hyperbolic
geometry (due to Bolyai and Lobachevsky) was a counterexample (wherein one re-
moves uniqueness). If one allows other axioms to be violated, then spherical geometry
is another counterexample. This led to interest in non-Euclidean geometries. These
geometries are strange in that the sum of angles of triangle can be larger or smaller
than 180 degrees. Moreover, Euclidean, hyerbolic, and spherical geometries are rather
symmetric, in that, using an isometry, one can bring any point to any other point. More
general distance functions (even in R2) do not satisfy this property of symmetry.

Riemann introduced the notion of an infinitesimal distance function (the Rieman-
nian metric) on general objects, namely, manifolds. He developed (earlier notions
due to Gauss) the concept of curvature on such objects. But other than for historical
(accidental) reasons, why bother studying Riemannian geometry (or its variants like
Lorentzian geometry)?

1. The cartographical question of whether we can draw a map of any part of the
earth to scale. (The answer is -we cannot, thanks toGauss’s TheoremaEgregium.)

2. General relativity due to Einstein requires Lorentzian metrics.

3. Image processing: How can a computer recognise say, known criminals perform-
ing crimes? (Congruence)

4. Topology (Poincaré conjecture proved using Riemannian geometry), Algebraic
geometry (the Bogomolov-Miyaoka-Yau inequality), and number theory (sym-
metric spaces and Harish Chandra).

In ordinary Euclidean geometry, we have congruence results (like the SAS property
for triangles) and local-to-global results (like the sum of angles being 180 degrees or
more generally, the sum of exterior angles of a polygon being 2π radians). We aim at
similar results in Riemannian geometry. Congruence is replaced by “Are these two
Riemannian manifolds isometric?" and local-to-global results are more complicated
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(like the Gauss-Bonnet-Theorem and a vast reaching generalisation - the Atiyah-Singer
index theorem).

3 Plane curves, curvature, and a local-to-global result
Let γ : [a, b] → Rn be a piecewise smooth path. We say that it is closed if γ(a) = γ(b)
and simple if γ is 1 − 1 except possibly at a, b. It is regular if at all smooth points,
v(t) = γ′(t) 6= 0. At such points, we can define the unit tangent vector T (t) = v(t)

‖v(t)‖ . We

can also reparametrise each smooth piece using the arc-length s =
∫ t2

t1

‖v(t)‖dt to get

a path whose velocity is 1. It is easy to see that any arc-length parametrised path has
〈a(s), v(s)〉 = 0where a(s) = v′(s) is the acceleration. Using the centripetal acceleration
as motivation, we define the curvature of a smooth arc-length parametrised path as
κ(s) = ‖a(s)‖. Clearly, a line has zero curvature and a circle has constant curvature
(approaching zero as the radius gets large). We now specialise to planar paths.

A curved polygon is a piecewise smooth arc-length parametrised simple closed
path, such that for each of the vertices, v(ai−) 6= −v(ai+) and v(0+) = v(l−). We now
introduce the notion of signed curvature. Consider theunit normalN = (−T2(t), T1(t)).
Then kg(s) = 〈a(s), N(s)〉. Thus a(s) = kg(s)N(s). This curvature is positive if the curve
bends towards the normal. With this convention, the signed curvature of a circle is
positive (if we move in the anticlockwise direction).

We nowwant to prove a generalisation of the sum-angle property for curved planar
polygons. To this end, we need to be able to define the “angle" of a curve:
Lemma (Tangent angle lemma): For any unit-speed smooth path γ : I → R2, there
exists a smooth function θ : I → R such that γ′(s) = (cos(θ)(s), sin(θ)(s)). Then
kg(s) = θ′(s).

Proof. Note that γ′ is a smooth map to S1. The unique lifting lemma states that there is
a unique smooth lift to the universal covering space (with themap exp(t) = eit) if we fix
θ(t0) = θ0. Actually, the lemma states that there is a unique continuous lift. However,
since the covering map is smooth, it is easy to see (locally using the evenly covered
neighbourhoods) that this lift is smooth. A calculation now shows what we need.

We can now state Hopf’s rotation theorem:
∫ l

0

kg(s)ds +
∑
k

εk = 2π where the

vertex defect/rotation εk = θ(ak+)− θ(ak−).

Proof. First assume that γ is smooth. Then
∫ l

0

kg(s)ds = θ(l) − θ(0). By translating
and rotating (these operations are isometries and don’t change anything), assume that
γ(0) = γ(l) = 0 and that γ is in the upper half plane. We now compare θ(s) to the angle
made with the x-axis, i.e., the secant-angle function φ(s1, s2) defined on the triangle
T = {0 ≤ s1 ≤ s2 ≤ l} as the unique continuous lift with φ(0, 0) = 0 = θ(0) of the
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continuous function

ψ(s1, s2) =
γ(s2)− γ(s1)
‖γ(s1)− γ(s2)‖

if s1 < s2, (s1, s2) 6= (0, l)

= v(s1), if s1 = s2

= −v(0), (s1, s2) = (0, l). (1)

Note that v(s) = ψ(s, s) and thus φ(s, s) = θ(s). Now since γ is in the upper half plane
and φ(0, 0) = 0, we see that sin(φ(0, s)) ≥ 0 and hence φ(0, s) ∈ [0, π]. In particular,
φ(0, l) = π. Likewise,ψ(s, l)has negative y-coordinate and sinceφ(0, l) = π, φ(l, l) = 2π.
Thus θ(l)− θ(0) = 2π.
If γ is not smooth, smoothly “round off" the corners (using arcs of hyperbolae) so that
the tangent angle monotonically changes by the defect, and apply the first part of the
proof. (Details are in Lee’s book.)
The congruence theorem for plane curves is: Two unit-speed equal length plane curves
are congruent by direction-preserving congruence iff their signed curvatures are equal.
This theorem will be left as a HW exercise.
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