
1 Recap
1. Normal Jacobi field. Conjuate points.

2. Statement of the theorem that basically says geodesics stop minimising beyond
the first conjugate point.

2 Applications of Jacobi fields
Theorem 1. Let γ : [a, b] → M be a unit-speed geodesic from p to q.

1. If there is a t0 ∈ (a, b) such that γ(t0) is conjugate to p along γ, then there is a proper
normal variation field such that Iγ(X,X) < 0. Thus γ is not minimal.

2. If there is no interior conjugate point but γ(a) and γ(b) are conjugate, then for every
proper normal variation, the curve Γ(s, .) is strictly longer than γ for all sufficiently small
s unless the variation field is Jacobi. If γ has no conjugate points, then for every proper
normal variation, the curve Γ(s, .) is strictly longer than γ for sufficiently small s.

Proof. 1. Last time.

2. Assume that a = 0 and let w1, . . . , wn be an onb for TpM with w1 = γ′(0). Let
Jα be the Jacobi field with Jα(0) = 0 and J ′

α(0) = wα (for α ≥ 2). Since there
are no interior conjugate points, Jα(t) forms an basis for the orthocomplement of
γ′(t) in Tγ(t)M and hence for a given normal variation field V , V = vαJα where
vα : (0, b) are piecewise smooth. In fact, vα have a smooth extension to [0, b):
Indeed, in geodesic normal coordinates, Jα(t) = t∂α (indeed, one can see that this
field satisfies the Jacobi ODE (why?)). By Taylor’s theorem the components of
V (t)/t extend smoothly. Likewise extension happens at t = b as well.
Let X = vαJ ′

α and Y = (vα)′Jα. Then I(V, V ) =
∫ b

0
(|V ′|2 −Riem(V, γ′, γ′, V )) dt.

Now note that the Riemann tensor term (which is the problematic one) is vα⟨J ′′
α, V ⟩

and hence

I(V, V ) =

∫ b

0

(
|V ′|2 + ⟨X ′, V ⟩ − (vα)′⟨J ′

α, V ⟩
)
dt

=

∫ b

0

(
⟨X, V ′⟩+ ⟨Y, V ′⟩+ ⟨X, V ⟩′ − ⟨X, V ′⟩ − (vα)′vβ⟨J ′

α, Jβ⟩
)
dt

=

∫ b

0

(
|Y |2 + ⟨X, V ⟩′ + (vα)′vβ⟨Jα, (Jβ)′⟩ − (vα)′vβ⟨(Jα)′, Jβ⟩

)
dt. (1)

Now

f(t) = ⟨J ′
1, J2⟩ − ⟨J1, J ′

2⟩
⇒ f ′ = ⟨−R(J1, γ

′)γ′, J2⟩+ ⟨J1, R(J2, γ
′)γ′⟩ = 0. (2)

Hence I(V, V ) ≥
∑

⟨X, V ⟩ai+1
ai = 0 with equality implying that Y = 0, i.e., vα is a

constant and hence V is a Jacobi field. Since it is a proper variation, p and γ(b) are



conjugate to each other. If there are no conjugate points, then Y ̸= 0 and hence
I(V, V ) > 0.

In other words, a geodesic stops being minimising beyond its first conjugate point.
Motivated by this property, let’s define: Let (M, g) be a (connected as always) complete
Riemannian manifold, p ∈ M, v ∈ TpM . Define the cut time tcut(p, v) of (p, v) as the sup
of all b > 0 such that γv restricted to [0, b] is minimising. Clearly tcut(p, v) > 0 but it can
be < ∞. Moreover, tcut(p, v) is uniformly positive for a neighbourhood of (p, v) ∈ TM .
If it is finite, the cut point of p along γv is γv(tcut). The collection of cut points of p is
called the cut locus of p Cut(p). Note that for a sphere with the round metric, the cut
locus is a single point. For Rn with the Euclidean metric, there is no cut locus. Here is
an important property of cut times.
Theorem 2. Let (M, g) be complete, (p, v) ∈ TM and |v| = 1. Then

1. If 0 < b < tcut(p, v), then γv has no conjugate points on [0, b] and is the unique unit-speed
minimiser between its endpoints.

2. If tcut(p, v) < ∞ and γ(tcut) is not conjugate to p, then γv is minimising on [0, tcut] and
there is at least one more minimsing geodesic between p and γv(tcut).

Proof. 1. If there is an interior conjugate point, then γv would have stopped min-
imising. γv is minimising on [0, b] (why?) It is also unique (why?)

2. Suppose c = tcut < ∞. Then γv is minimising on [0, bN = c − 1
N
]. By continuity,

d(p, γv(c)) = lim d(p, γv(bN)) = lim bN = c. Thus γv is minimising on [0, c] (and
hence γv(c) cannot be a conjugate point to p) and not beyond. Consider cn = c+ 1

n
.

There is a sequence of unit speed minimal geodesics γvn(t) connecting p and
γv(an). By compactness, there is a subsequence (that we continue to denote as
vn) such that vn → w and by passing to a further subsequence, that an = l(γvn)
converges to l. Now c = d(p, γv(c)) = lim d(p, γvn(an)) = lim an = l. Thus γw is
also a minimising geodesic. We need to show that it is different from γv. Since
γv(c) is not conjugate, there is a neighbourhood V around this point where exp is
injective. Now expp(anvn) = exp(cnv) for some cn but since an < cn, anvn is not in
V for large n. Hence the limit cw is also not in V for large n. Thus w ̸= v.

We have the following important corollary.
Theorem 3. Let (M, g) be complete and B(0, r) be a ball in TpM . Then if expp : B(0, r) → M
is injective, it is a diffeomorphism to its image.

Proof. Obviously we only need to check whether the exponential map is an immersion.
Suppose it is not at some point v. Then (expp)∗ at v has a kernel, i.e., there is a conjugate
point along expp(tv) at t = 1. Take the first conjugate point along this geodesic. Let’s
say it occurs at t0 ≤ 1. By the theorem above, expp(tv) stops being minimising starting
from t0. By completeness, there is one more geodesic expp(tw) that has shorter length.
But this contradicts the injectivity of the exponential map.
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Motivated by this theorem, we define the injectivity radius of a point p as the sup
over all r such that expp : B(0, r) → M is a diffeomorphism. By the above theorem, it
is precisely the set of points where the map is injective. The injectivity radius of (M, g)
is the inf of all injectivity radii of points. Note that inj(M, g) can be zero (example?)
only for non-compact manifolds (why?)
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