
1 Recap
1. Geodesics stop minimising beyond the first conjugate point.

2. Cut time, and injectivity radius.

2 Applications of Jacobi fields
We now proceed to calculate Jacobi fields on space-forms. The point is that Jacobi
fields basically measure the deviation of geodesics. So we expect that if the curva-
ture is largely positive, the geodesics will come close and diverge otherwise. To do
this comparison, we need explicit formulae for the Jacobi fields of spaces of constant
curvature. Define the functions

snK(t) =
√
K sin(

√
Kt), K > 0

= t, K = 0

=
√
−K sinh(

√
−Kt), K < 0. (1)

This function satisfies sn′′
K +Ks = 0 and s(0) = 0, s′(0) = 1.

Assume that the sectional curvature is a constant K and that e1 = γ′, . . . , en is a parallel
collection of orthonormal vector fields on a unit-speed smooth geodesic γ.

⟨J, ei⟩′′ = ⟨J ′′, ei⟩ = −Riem(J, e1, e1, ei) = −JkRiem(ek, e1, e1, ei)

=
1

2
Jk(Rk11k +Ri11i −Riem(ek + ei, e1, e1, ek + ei). (2)

If k ̸= i, the right-hand-side is 0. If k = i = 1, it is 0. Otherwise, ⟨J, ek⟩′′ = −JkK if
k ̸= 1. Thus, if J(0) = 0, then J = snK(t)E(t) for some normal parallel vector field
E(t).
As a corollary, we claim that if sec ≡ K, then in geodesic normal coordinates,
g = dr2 + sn2

K(r)gSn−1 . In particular, the geodesic normal coordinates give an isometry
between this metric and the metric with constant sectional curvature. (The Killing-
Hopf theorem gives a global version of this result.)
Proof: By Gauss, g = dr2 + hr. The Euclidean metric is gRn = dr2 + r2gSn−1 and coin-
cides with g at p. Suppose v is a tangent vector (that is tangent to Sr) at q = expp(rv),
then |v|2 = hr. Now we evaluate this number in another way, using Jacobi fields.
Basically, we know the explicit formula for a Jacobi field with J(0) = 0 and J ′(0) = v

r

along a radial geodesic. Indeed, it is J = tv
r
. Note that J is perpendicular to γ at

p, q and hence J = snK(t)E(t) where J ′(0) = E(0) = v
r

and |E(t)| = |E(0)|. Now,
|v|2q = |J(r)|2 = sn2

K(r)|E(0)|2 = sn2
K

|v|2p
r2

= sn2
KgSn−1(v, v) and hence we are done.

3 Comparison geometry
Here is a bunch of theorems that fall under the theme of “comparison geometry".



3.1 Bonnet-Myers
Let (M, g) be a complete manifold with Ricc(X,X) ≥ (n − 1)Kg(X,X) for a constant
K > 0. Then M is compact and diam(M) ≤ π√

K
.

Proof: The idea is that if the Ricci is bounded below, then since Ricci is a sum of
(n − 1) sectional curvatures, (indeed, Riccii =

∑
l Rliil) we expect that some sort of a

“Laplacian" (sum of Index forms) of the energy/length functional is bounded below
at least for large geodesics and hence large geodesics cannot be length minimising.
The sum of Index forms must each be evaluated on the Jacobi fields of a model space
because we expect that the geodesics in M converge faster than the ones in the model
space.
Indeed, suppose l = d(p, q) > π√

K
and γ : [0, 1] → M is a minimal geodesic. Let ei be

parallel orthonormal fields along γ such that e1 = γ′

l
. Then define Vj = sin(πt)ej . Then

Vj(1) = Vj(0) = 0 and
∑

j≥2 I(Vj, Vj) < 0 and hence for some j, I(Vj, Vj) < 0 and we
have a contradiction.
It is crucial that one has a uniform lower bound. Indeed, take a paraboloid z = x2+ y2.
It has K > 0 but is noncompact.
It turns out that if equality holds in the Ricci lower bound above, then (M, g) is isometric
to a sphere with a round metric (Cheng’s rigidity theorem).
Lastly, notice that the universal cover (M̃, π∗g) is complete and continues to satisfy the
hypotheses and is hence compact. This means that the fundamental group is finite!
(In particular, it turns out that dimH1(M) = 0 assuming some results of algebraic
topology.)
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